test_ensemble_models <- function() { data('m_psych_embeds') df_params = expand.grid(n_xi = 8:15, pts = c(15, 20, 25, 30), dist = "cosine", dim_red = "ICA", n_dimred_comp = c(10, 15, 20, 25)) df_kxi = opticskxi_pipeline(m_psych_embeds, df_params, metrics_dist = 'cosine', max_size_ratio = 0.15, n_min_clusters = 5) gt = (gtable_kxi_profiles(df_kxi)) expect_true(TRUE) gt = (gtable_kxi_profiles(df_kxi, metric = 'bw.ratio')) expect_true(TRUE) gt = (gtable_kxi_profiles(df_kxi, metric = 'dunn')) expect_true(TRUE) gg = (ggplot_kxi_metrics(df_kxi, n = 15, metric = c("avg.silwidth", "bw.ratio", "dunn"))) expect_true(TRUE) ensemble_obj = ensemble_metrics(n_top = 50, df_params = df_kxi) expect_true(TRUE) df_ensemble_kxi = ensemble_models(df_kxi, n_models = 4, model_subsample = c(0.1, 0.2, 0.5)) expect_true(TRUE) gt = (gtable_kxi_profiles(df_ensemble_kxi)) expect_true(TRUE) df_ica = fortify_ica(m_psych_embeds, n.comp = 4, sup_vars = data.frame(Clusters = df_ensemble_kxi$clusters[[1]])) gg = ggpairs(df_ica, 'Clusters', ellipses = TRUE, axes = 1:4) %>% grid::grid.draw() expect_true(TRUE) best_kxi <- get_best_kxi(df_kxi, metric = 'dunn') gg = fortify_ica(m_psych_embeds, n.comp = 4, sup_vars = data.frame(Clusters = best_kxi$clusters)) %>% ggpairs('Clusters', ellipses = TRUE, axes = 1:4) %>% grid::grid.draw() expect_true(TRUE) } test_that('ensemble_models', test_ensemble_models())