# Run error tests #--------------------- test_that("data input not valid", { expect_error( nuts_aggregate( data = 1, to_level = 1, variables = c("values" = "absolute") ), "Input `data` must be a nuts.classified-object, not a number." ) }) test_that("variables missing", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate(data = ., to_level = 1) ) }) test_that("variable not found", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( data = ., to_level = 1, variables = c("valuess" = "absolute") ), "Input `variables` not found in the provided data frame." ) }) test_that("variable type not found", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( data = ., to_level = 1, variables = c("values" = "absolutee") ), "Variable type\\(s\\) not found. Use one of the following: 'absolute' or 'relative'." ) }) test_that("invalid to_level 1", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( data = ., to_level = 4, variables = c("values" = "absolute") ), "Input `to_level` invalid. Must be 1 or 2." ) }) test_that("invalid to_level 2", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( data = ., to_level = TRUE, variables = c("values" = "absolute") ), "Input `to_level` invalid. Must be 1 or 2." ) }) test_that("multiple to_levels", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( data = ., to_level = c(2, 3), variables = c("values" = "absolute") ), "Input `to_level` invalid. Must be 1 or 2." ) }) test_that("weight invalid", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( data = ., to_level = 1, variables = c("values" = "absolute"), weight = "pop19" ), "Input `weight` invalid. Must be either 'areaKm', 'pop11', 'pop18', 'artif_surf12' or 'artif_surf18'." ) }) test_that("multiple weights supplied", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( data = ., to_level = 1, variables = c("values" = "absolute"), weight = c("pop19", "areaKm") ), "Input `weight` invalid. Must be either 'areaKm', 'pop11', 'pop18', 'artif_surf12' or 'artif_surf18'." ) }) test_that("NUTS codes already at level 2", { expect_error( manure_2_indic_DE_2003() %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( to_level = 2, variables = c("values" = "absolute") ), "NUTS codes already at level 2." ) }) # Run positive tests #--------------------- test_that("Converter output spits out correct names", { expect_equal( manure %>% filter(nchar(geo) == 5) %>% filter(!grepl("EU|ME|ZZ", geo)) %>% nuts_classify( nuts_code = "geo", group_vars = c("indic_ag", "time") ) %>% nuts_aggregate( to_level = 2, variables = c("values" = "absolute") ) %>% names(.), c("to_code", "country", "indic_ag", "time", "values") ) }) test_that("See if all codes are aggregated from level 3 to level 2", { expect_equal({ manure %>% filter(nchar(geo) == 5) %>% filter(!grepl("EU|ME|ZZ", geo)) %>% nuts_classify(nuts_code = "geo", group_vars = c("indic_ag", "time")) %>% nuts_aggregate( to_level = 2, variables = c("values" = "absolute") ) %>% pull(to_code) %>% nchar(.) %>% unique() }, 4) }) test_that("See if all codes are aggregated from level 3 to level 1", { expect_equal({ manure %>% filter(nchar(geo) == 5) %>% filter(!grepl("EU|ME|ZZ", geo)) %>% nuts_classify(nuts_code = "geo", group_vars = c("indic_ag", "time")) %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute") ) %>% pull(to_code) %>% nchar(.) %>% unique() }, 3) }) test_that("Grouped output equal to non-grouped output", { expect_equal({ manure_2_indic() %>% filter(grepl("DE", geo)) %>% filter(!grepl("ZZ", geo)) %>% filter(time %in% c(2000, 2010)) %>% nuts_classify(nuts_code = "geo", group_vars = "time") %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute", "pct" = "relative") ) %>% filter(time == 2000) %>% select(-time) %>% as.data.frame() }, manure_2_indic() %>% filter(grepl("DE", geo)) %>% filter(!grepl("ZZ", geo)) %>% filter(time %in% c(2000)) %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute", "pct" = "relative") ) %>% as.data.frame()) }) test_that("Grouped output equal to non-grouped output", { expect_equal({ manure_2_indic() %>% filter(grepl("DE", geo)) %>% filter(!grepl("ZZ", geo)) %>% filter(time %in% c(2000, 2010)) %>% nuts_classify(nuts_code = "geo", group_vars = "time") %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute", "pct" = "relative") ) %>% filter(time == 2000) %>% select(-time) %>% as.data.frame() }, manure_2_indic() %>% filter(grepl("DE", geo)) %>% filter(!grepl("ZZ", geo)) %>% filter(time %in% c(2000)) %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute", "pct" = "relative") ) %>% as.data.frame()) }) test_that("Additional variables unspecified by the user (here: time)", { expect_equal( manure_2_indic() %>% filter(grepl("DE", geo)) %>% filter(!grepl("ZZ", geo)) %>% filter(time %in% c(2000)) %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute", "pct" = "relative"), missing_rm = TRUE ) %>% names(.), c("to_code", "country", "values", "pct") ) }) test_that("Feeding multiple NUTS versions within groups", { expect_equal( expect_error( manure %>% filter(nchar(geo) == 5) %>% select(geo, indic_ag, values) %>% distinct(geo, .keep_all = TRUE) %>% nuts_classify( nuts_code = "geo", group_vars = "indic_ag", data = . ) %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute"), missing_rm = TRUE ) ) %>% grepl("Please make sure...", .), TRUE ) }) test_that("Feeding multiple NUTS versions within groups. Option most frequent.", { expect_equal( manure %>% filter(nchar(geo) == 5) %>% select(geo, indic_ag, values) %>% distinct(geo, .keep_all = TRUE) %>% nuts_classify( nuts_code = "geo", group_vars = "indic_ag", data = . ) %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute"), multiple_versions = "most_frequent" ) %>% filter(!is.na(values)) %>% dim(), c(52, 4) ) }) test_that("Feeding multiple NUTS versions within groups. Option error.", { expect_error( manure %>% filter(nchar(geo) == 5) %>% select(geo, indic_ag, values) %>% distinct(geo, .keep_all = TRUE) %>% nuts_classify( nuts_code = "geo", group_vars = "indic_ag", data = . ) %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute"), multiple_versions = "error" ), "Mixed NUTS versions within groups!" ) }) test_that("Missing NUTS codes, reporting share of missing weights", { expect_equal( manure_2_indic() %>% filter(grepl("DE", geo)) %>% filter(!grepl("ZZ", geo)) %>% filter(time %in% c(2000)) %>% nuts_classify(nuts_code = "geo") %>% nuts_aggregate( to_level = 1, variables = c("values" = "absolute", "pct" = "relative"), missing_weights_pct = TRUE ) %>% names(.), c("to_code", "country", "values", "pct", "values_na_w", "pct_na_w") ) })