# Testing data 1 ---- # Created to test with all weights equal to 1, not training any NN. # With these values we have some tests with manually computed coefficients. testing_helper_1 <- function(){ testing_data_1 <- vector(mode="list", length= 0) testing_data_1$weights_list <- vector(mode="list", length= 3) testing_data_1$weights_list[[1]] <- matrix(1,3,2) testing_data_1$weights_list[[2]] <- matrix(1,3,2) testing_data_1$weights_list[[3]] <- matrix(1,3,1) testing_data_1$af_string_list <- list("softplus", "softplus", "linear") testing_data_1$taylor_orders <- c(2, 2, 1) return(testing_data_1) } # Testing data 2 ---- # In this case we will generate some polynomial data with linear output # This data will be used in testing keras/tensorflow and luz/torch # Note that the data is random so the NN will not learn properly but # we can still test if the coefficients are as expected by nn2poly. testing_helper_2 <- function(){ set.seed(42) n_sample <- 100 p <- 2 testing_data_2 <- vector(mode="list", length= 0) testing_data_2$train_x <- matrix(rnorm(n_sample*p),ncol = p) testing_data_2$train_y <- matrix(rnorm(n_sample),ncol = 1) testing_data_2$taylor_orders <- c(2, 2, 1) return(testing_data_2) }