R Under development (unstable) (2023-12-18 r85702 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## Example of a bad model vs. uncertainty vs. model averaging > require(nlraa) Loading required package: nlraa > require(car) Loading required package: car Loading required package: carData > require(ggplot2) Loading required package: ggplot2 > > run.predict.nls <- Sys.info()[["user"]] == "fernandomiguez" && FALSE > > if(run.predict.nls){ + + data(barley, package = "nlraa") + + ggplot(data = barley, aes(x = NF, y = yield)) + + geom_point() + + xlab("NF (g/m2)") + ylab("Yield (g/m2)") + + ggtitle("Barley yield response to N fertilizer") + + ## This is not a 'good' model but we'll go with it + fm.LP <- nls(yield ~ SSlinp(NF, a, b, xs), data = barley) + + sim.LP <- simulate_nls(fm.LP, nsim = 1e3) + + ## Does predict work for a single model? + prd.LP <- predict_nls(fm.LP) + prd.LP.ci <- predict_nls(fm.LP, interval = "confidence") + prd.LP.pi <- predict_nls(fm.LP, interval = "prediction") + + ggplot(data = barley, aes(x = NF, y = yield)) + + geom_point() + + geom_line(aes(y = fitted(fm.LP))) + + geom_vline(xintercept = coef(fm.LP)[3]) + + xlab("NF (g/m2)") + ylab("Yield (g/m2)") + + ggtitle("Linear-plateau fit with break-point") + + barleyA <- cbind(barley, summary_simulate(sim.LP, probs = c(0.05, 0.95))) + + fm.LP.bt <- boot_nls(fm.LP) ## Bootstrap + fm.LP.bt.ci <- confint(fm.LP.bt) ## Bootstrap CI + fm.LP.ci <- confint(fm.LP) ## Profiled CI + + ggplot(data = barleyA, aes(x = NF, y = yield)) + + geom_point() + + geom_line(aes(y = fitted(fm.LP))) + + geom_ribbon(aes(ymin = Q5, ymax = Q95), alpha = 0.3, fill = "purple") + + geom_vline(xintercept = fm.LP.bt$t0[3]) + + geom_errorbarh(aes(y = 100, xmin = fm.LP.ci[3,1], xmax = fm.LP.ci[3,2], + color = "profiled"), color = "blue") + + geom_errorbarh(aes(y = 50, xmin = fm.LP.bt.ci[3,1], xmax = fm.LP.bt.ci[3,2], + color = "bootstrap"), color = "purple") + + geom_text(aes(x = 13, y = 100, label = "profiled"), color = "blue") + + geom_text(aes(x = 13, y = 50, label = "bootstrap"), color = "purple") + + xlab("NF (g/m2)") + ylab("Yield (g/m2)") + + ggtitle("90% uncertainty bands and intervals for the break-point") + + ## What if we fit several models? + fm.L <- lm(yield ~ NF, data = barley) + fm.Q <- lm(yield ~ NF + I(NF^2), data = barley) + fm.A <- nls(yield ~ SSasymp(NF, Asym, R0, lrc), data = barley) + fm.BL <- nls(yield ~ SSblin(NF, a, b, xs, c), data = barley) + + print(IC_tab(fm.L, fm.Q, fm.A, fm.LP, fm.BL), digits = 2) + + ggplot(data = barley, aes(x = NF, y = yield)) + + geom_point() + + geom_line(aes(y = fitted(fm.L), color = "Linear")) + + geom_line(aes(y = fitted(fm.Q), color = "Quadratic")) + + geom_line(aes(y = fitted(fm.A), color = "Asymptotic")) + + geom_line(aes(y = fitted(fm.LP), color = "Linear-plateau")) + + geom_line(aes(y = fitted(fm.BL), color = "Bi-linear")) + + xlab("NF (g/m2)") + ylab("Yield (g/m2)") + + ggtitle("Different model fits") + + ## Each model prediction is weighted using the AIC values + prd <- predict_nls(fm.L, fm.Q, fm.A, fm.LP, fm.BL) + prdc <- predict_nls(fm.L, fm.Q, fm.A, fm.LP, fm.BL, interval = "confidence") + prdp <- predict_nls(fm.L, fm.Q, fm.A, fm.LP, fm.BL, interval = "prediction") + + ggplot(data = barley, aes(x = NF, y = yield)) + + geom_point() + + geom_line(aes(y = fitted(fm.L), color = "Linear")) + + geom_line(aes(y = fitted(fm.Q), color = "Quadratic")) + + geom_line(aes(y = fitted(fm.A), color = "Asymptotic")) + + geom_line(aes(y = fitted(fm.LP), color = "Linear-plateau")) + + geom_line(aes(y = fitted(fm.BL), color = "Bi-linear")) + + geom_line(aes(y = prd, color = "Avg. Model"), size = 1.2, color = "black") + + xlab("NF (g/m2)") + ylab("Yield (g/m2)") + + ggtitle("Different model fits and average model weighted by AIC") + + ggplot(data = barley, aes(x = NF, y = yield)) + + geom_point() + + geom_line(aes(y = fitted(fm.L), color = "Linear")) + + geom_line(aes(y = fitted(fm.Q), color = "Quadratic")) + + geom_line(aes(y = fitted(fm.A), color = "Asymptotic")) + + geom_line(aes(y = fitted(fm.LP), color = "Linear-plateau")) + + geom_line(aes(y = fitted(fm.BL), color = "Bi-linear")) + + geom_line(aes(y = prd, color = "Avg. Model"), size = 1.2, color = "black") + + geom_ribbon(aes(ymin = prdc[,3], ymax = prdc[,4]), + fill = "purple", alpha = 0.3) + + geom_ribbon(aes(ymin = prdp[,3], ymax = prdp[,4]), + fill = "purple", alpha = 0.1) + + xlab("NF (g/m2)") + ylab("Yield (g/m2)") + + ggtitle("Model fits, 90% uncertainty bands for confidence and prediction") + + ## Do GAMs work? + require(mgcv) + + fm.L <- lm(yield ~ NF, data = barley) + fm.Q <- lm(yield ~ NF + I(NF^2), data = barley) + fm.C <- lm(yield ~ NF + I(NF^2) + I(NF^3), data = barley) + fm.A <- nls(yield ~ SSasymp(NF, Asym, R0, lrc), data = barley) + fm.LP <- nls(yield ~ SSlinp(NF, a, b, xs), data = barley) + fm.G <- gam(yield ~ NF + s(NF, k = 3), data = barley) + + fm.Gs <- simulate_lm(fm.G, nsim = 1e3) + fm.Gss <- summary_simulate(fm.Gs, probs = c(0.05, 0.95)) + barleyAS <- cbind(barley, fm.Gss) + + ## The default predict method for GAMs does not produce intervals + ## But we can generate them + fm.Gp <- predict(fm.G, se.fit = TRUE) + qnt <- qt(0.05, 72) + fm.Gpd <- data.frame(prd = fm.Gp$fit, + lwr = fm.Gp$fit + qnt * fm.Gp$se.fit, + upr = fm.Gp$fit - qnt * fm.Gp$se.fit) + ## These intervals are almost exactly the same as the ones + ## obtained through simulation + + print(IC_tab(fm.L, fm.Q, fm.C, fm.A, fm.LP, fm.G), digits = 2) + + fm.prd <- predict_nls(fm.L, fm.Q, fm.C, fm.A, fm.LP, fm.G) + + ggplot(data = barleyAS, aes(x = NF, y = yield)) + + geom_point() + + geom_line(aes(y = fitted(fm.G), color = "gam")) + + geom_line(aes(y = fitted(fm.C), color = "cubic")) + + geom_line(aes(y = Estimate, color = "simulate_lm")) + + geom_line(aes(y = fm.prd, color = "Avg. Model")) + + geom_ribbon(aes(ymin = Q5, ymax = Q95), fill = "purple", alpha = 0.3) + + ggtitle("90% bands based on simulation") + + } > > > proc.time() user system elapsed 1.29 0.26 1.54