## from PR#8905 library(nlme) data(Orthodont) fm <- lme(distance ~ poly(age, 3) + Sex, data = Orthodont, random = ~ 1) # data for predictions Newdata <- head(Orthodont) Newdata$Sex <- factor(Newdata$Sex, levels = levels(Orthodont$Sex)) (pr <- predict(fm, Newdata)) stopifnot(all.equal(c(pr), fitted(fm)[1:6])) ## https://stat.ethz.ch/pipermail/r-devel/2013-September/067600.html ## but with a different fix. m0 <- lme(distance ~ Sex, random = ~1|Subject, data = Orthodont) Fitted <- predict(m0, level = 0) Fitted.Newdata <- predict(m0, level = 0, newdata = Orthodont) stopifnot(sum(abs(Fitted - Fitted.Newdata)) == 0) Fitted <- predict(m0, level = 1) Fitted.Newdata <- predict(m0, level = 1, newdata = Orthodont) sum(abs(Fitted - Fitted.Newdata)) stopifnot(sum(abs(Fitted - Fitted.Newdata)) == 0) m1 <- lme(distance ~ 1, random = ~1|Subject, data = Orthodont) Fitted <- predict(m1, level = 0) Fitted.Newdata <- predict(m1, level = 0, newdata = Orthodont) stopifnot(sum(abs(Fitted - Fitted.Newdata)) == 0) Fitted <- predict(m1, level = 1) Fitted.Newdata <- predict(m1, level = 1, newdata = Orthodont) stopifnot(sum(abs(Fitted - Fitted.Newdata)) == 0) m2 <- lme(distance ~ 0, random = ~1|Subject, data = Orthodont) Fitted <- predict(m2, level = 0) Fitted.Newdata <- predict(m2, level = 0, newdata = Orthodont) stopifnot(sum(abs(Fitted - Fitted.Newdata)) == 0) Fitted <- predict(m2, level = 1) Fitted.Newdata <- predict(m2, level = 1, newdata = Orthodont) stopifnot(sum(abs(Fitted - Fitted.Newdata)) == 0) m3 <- lme(fixed = distance ~ age, data = Orthodont, random = ~ 1 | Subject) m4 <- update(m3, random = ~ age | Subject) m5 <- update(m4, fixed. = distance ~ age * Sex) newD <- expand.grid(age = seq(7,15, by = .25), Sex = c("Male", "Female"), Subject = c("M01", "F01")) (n.age <- attr(newD, "out.attrs")$dim[["age"]]) # 33 str(p5 <- predict(m5, newdata = newD, asList = TRUE, level=0:1)) pp5 <- cbind(newD, p5[,-1]) stopifnot(identical(colnames(pp5), c("age", "Sex", "Subject", "predict.fixed", "predict.Subject"))) fixef(m5) # (Intercept) age SexF age:SexF p5Mf <- pp5[pp5$Sex == "Male", "predict.fixed"] p5MS <- subset(pp5, subset = Subject == "M01" & Sex == "Male", select = "predict.Subject", drop=TRUE) X.1 <- cbind(1, newD[1:n.age,"age"]) stopifnot(all.equal(p5Mf[ 1:n.age], p5Mf[-(1:n.age)], tol = 1e-15) , all.equal(p5Mf[ 1:n.age], c(X.1 %*% fixef(m5)[1:2]), tol = 1e-15) , all.equal(p5MS, c(X.1 %*% (fixef(m5)[1:2] + as.numeric(ranef(m5)["M01",]))), tole = 1e-15) ) ## PR#18312: predict with character vs. factor variables in newdata newOrth <- data.frame(Subject = "F03", Sex = "Female", age = 8, stringsAsFactors = FALSE) # default in R >= 4.0.0 stopifnot(all.equal(predict(m5, newdata = newOrth), # this failed fitted(m5)["F03"], # first obs of F03 is for age 8 check.attributes = FALSE)) ## failed in nlme <= 3.1-155 with ## Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : ## contrasts can be applied only to factors with 2 or more levels newOrth2 <- rbind(newOrth, list("M11", "Male", 16)) stopifnot(all.equal( predict(m5, newdata = type.convert(newOrth2, as.is = FALSE)), # factor predict(m5, newdata = newOrth2) # character )) ## predictions with character input were *wrong* in nlme <= 3.1-155 ## numeric newdata for a factor variable should at least warn tools::assertWarning(predict(m5, newdata = transform(newOrth, Sex = 2)), verbose = TRUE) ## did not warn in nlme <= 3.1-155 and may return unexpected result ## (not the same as Sex=factor("Female", levels = c("Male", "Female"))) ## intercept-free model m0b <- lme(distance ~ Sex - 1, random = ~1|Subject, data = Orthodont) stopifnot(all.equal(predict(m0b, Orthodont[1,], level=0), fixef(m0b)[1], check.attributes = FALSE)) ## predict wrongly returned c(0,0) in nlme <= 3.1-155 ##--- simulate():--------- ## border cases ort.0 <- simulate(m3, method = character())# "nothing" stored ort.M <- simulate(m3, method = "ML", seed=47) ort.R <- simulate(m3, method = "REML", seed=47) stopifnot(identical(names(ort.0), "null"), identical(names(ort.M), "null"), identical(names(ort.R), "null"), identical(ort.0$null, list()), identical(names(ort.M$null), "ML"), identical(names(ort.R$null), "REML"), all.equal(loM <- ort.M$null$ML [,"logLik"], -215.437, tol = 2e-6) , all.equal(loR <- ort.R$null$REML[,"logLik"], -217.325, tol = 2e-6) ) system.time( orthS3 <- simulate.lme(list(fixed = distance ~ age, data = Orthodont, random = ~ 1 | Subject), nsim = 3, m2 = list(random = ~ age | Subject), seed = 47) ) ## the same, starting from two fitted models : ort.S3 <- simulate(m3, m2 = m4, nsim = 3, seed = 47) attr(ort.S3, "call") <- attr(orthS3, "call") ## was 1e-15, larger tolerance needed with ATLAS stopifnot(all.equal(orthS3, ort.S3, tolerance = 1e-10)) logL <- sapply(orthS3, function(E) sapply(E, function(M) M[,"logLik"]), simplify="array") stopifnot(is.array(logL), length(d <- dim(logL)) == 3, d == c(3,2,2), sapply(orthS3, function(E) sapply(E, function(M) M[,"info"])) == 0 , # typically even identical(), but not with ATLAS all.equal(logL[1,,"null"], c(ML = loM, REML = loR), tol = 1e-10) , all.equal(c(logL) + 230, c(14.563 , 2.86712, 1.00026, 12.6749, 1.1615,-0.602989, 16.2301, 2.95877, 2.12854, 14.3586, 1.2534, 0.582263), tol=8e-6) )