## reported by simon bond to R-help 2007-03-16 library(nlme) x <- rnorm(10, 0.1, 1) try(gls(x ~ 0)) # segfaulted in 3.1-79 ## PR#10364 # copied verbatim from Pinheiro & Bates 8.3.3 fm1Dial.gnls <- gnls(rate ~ SSasympOff(pressure, Asym, lrc, c0), data = Dialyzer, params = list(Asym + lrc ~ QB, c0 ~ 1), start = c(53.6, 8.6, 0.51, -0.26, 0.225)) (p1 <- predict(fm1Dial.gnls)) (p2 <- predict(fm1Dial.gnls, newdata = Dialyzer)) # failed, factor levels complaint # also, missed row names as names stopifnot(all.equal(as.vector(p1), as.vector(p2)), # 'label' differs identical(names(p1), names(p2))) ## PR#13418 fm1 <- gls(weight ~ Time * Diet, BodyWeight) (V10 <- Variogram(fm1, form = ~ Time | Rat)[1:10,]) ## failed in 3.1-89 stopifnot(all.equal(V10$variog, c(0.0072395216, 0.014584634, 0.014207936, 0.018442267, 0.011128505, 0.019910082, 0.027072311, 0.034140379, 0.028320657, 0.037525507)), V10$dist == c(1, 6, 7, 8, 13, 14, 15, 20, 21, 22), V10$n.pairs == 16*c(1, 1, 9, 1, 1, 8, 1, 1, 7, 1)) intervals(fm1) ## predict from model with factor and no intercept fm1b <- gls(weight ~ Diet - 1, BodyWeight) stopifnot(all.equal(predict(fm1b, BodyWeight[1,]), coef(fm1b)[1], check.attributes = FALSE)) ## in nlme <= 3.1-155, failed with ## Error in X[, names(cf), drop = FALSE] : subscript out of bounds ## predict.gls(): handling newdata for factor variables stopifnot(all.equal( predict(fm1, newdata = data.frame(Time = 1, Diet = "1", stringsAsFactor = FALSE)), fitted(fm1)[1], check.attributes = FALSE)) ## in nlme <= 3.1-155, predict() failed with ## Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : ## contrasts can be applied only to factors with 2 or more levels stopifnot(all.equal( predict(fm1, data.frame(Time = 71, Diet = c("2", "3"), stringsAsFactor = FALSE)), predict(fm1, data.frame(Time = 71, Diet = c("2", "3"), stringsAsFactor = TRUE)))) ## in nlme <= 3.1-155, using character input failed with ## Error in X[, names(cf), drop = FALSE] : subscript out of bounds tools::assertError(predict(fm1, data.frame(Time = 71, Diet = 2)), verbose = TRUE) ## more helpful error + warning now ## PR#17226: same for predict.gnls(), also without intercept fm2 <- gnls(weight ~ f, data = BodyWeight, params = list(f ~ Diet - 1), start = rep(coef(fm1)[1], 3)) stopifnot(all.equal(predict(fm2, head(BodyWeight)), head(fitted(fm2)), check.attributes = FALSE)) ## in nlme <= 3.1-155, failed with ## Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : ## contrasts can be applied only to factors with 2 or more levels stopifnot(all.equal( predict(fm2, data.frame(Time = 71, Diet = c("2", "3"), stringsAsFactor = FALSE)), predict(fm2, data.frame(Time = 71, Diet = c("2", "3"), stringsAsFactor = TRUE)))) ## in nlme <= 3.1-155, failed with ## Error in p %*% beta[pmap[[nm]]] : non-conformable arguments ## PR#17880: offset() terms are (currently) not supported in package nlme y <- 10:20; off <- rep(10, length(y)) tools::assertError(gls(y ~ 1 + offset(off)), verbose = TRUE) ## the following was TRUE in nlme <= 3.1-155, unfortunately: ## all.equal(coef(gls(y ~ 1 + offset(off))), coef(gls(y ~ 1))) ## PR#18283: gls() did not keep terms so predict() lacked "predvars" fm_poly <- gls(distance ~ poly(age, 1), data = Orthodont) fm_nopoly <- gls(distance ~ age, data = Orthodont) stopifnot(all.equal(predict(fm_poly, data.frame(age = 10)), predict(fm_nopoly, data.frame(age = 10)))) ## in nlme <= 3.1-155, prediction from fm_poly failed with ## Error in poly(age, 1) : ## 'degree' must be less than number of unique points stopifnot(all.equal(predict(fm_poly, head(Orthodont)), head(fitted(fm_poly)), check.attributes = FALSE)) ## predictions were wrong due to data-dependent bases ## R-help, From: Aaron Crowley; Jul 21, 2022 "Error generated by nlme::gnls" df <- Soybean n <- nrow(df) set.seed(548) for(j in 1:12) df[sprintf("x%02d", j)] <- sample(0:1, size=n, replace=TRUE) gm12 <- gnls(weight ~ x, data = df, params = (x ~ -1 + x01 + x02 + x03 + x04 + x05 + x06 + x07 + x08 + x09 + x10 + x11 + x12), start = rep(0, 12)) ## gave error Error in if (deparse(params[[nm]][[3]]) != "1") { : ## the condition has length > 1 stopifnot(all.equal( c(0.652122, 0.454468, 1.01271, 1.20772, 1.35816, -0.207982, 1.19959, 0.349636, 2.39818, 1.36285, 0.75055, 1.18374), unname(coef(gm12)), tol = 1e-5)) # Lnx x68_64: 1.18e-6 ## PR#17988: corARMA() with default p=0=q fails, now with a clear error message tools::assertError( gls(follicles ~ 1, Ovary, correlation = corARMA(form = ~ 1 | Mare)) , verbose = TRUE) ## in nlme <= 3.1-164, corARMA() returned dysfunctional corIdent() which gave ## Error in getGroupsFormula.default(correlation) : ## 'form' argument must be a formula