### simulateData # test extreme values library(nlcv) library(a4Core) myEset <- simulateData(nCols = 40, nRows = 1000, nEffectRows = 0) ### check the converter works as expected set.seed(120) x <- matrix(rnorm(1000*20), ncol=20) y <- sample(c(1:4), size=20, replace=TRUE) traindf <- cbind.data.frame(t(x[,1:15]), y = y[1:15]) alldf <- cbind.data.frame(t(x), y) pamrMLObj <- pamrML(y ~ ., traindf) nlcv:::pamrIconverter(obj = pamrMLObj, data = alldf, trainInd = 1:15) ### test pamrI for an ExpressionSet EsetStrongSignal <- simulateData(nCols = 40, nRows = 1000, nEffectRows = 10, nNoEffectCols = 0, betweenClassDifference = 3, withinClassSd = 0.5) library(MLInterfaces) idxTrain <- sample(1:40, 20) mlobj <- MLearn(type ~ ., data = EsetStrongSignal, .method = pamrI, trainInd = idxTrain) mlobj # nlda (to check export of predict.lda) mlNldaObj <- MLearn(type ~ ., data = EsetStrongSignal, .method = nldaI, trainInd = idxTrain)