library(SIBER)
# library(nichetools)
# library(testthat)
# create the siber object
# str(demo.siber.data.2)
demo.siber.data.2$community_names <- as.factor(demo.siber.data.2$community)
demo.siber.data.2$community <- as.numeric(demo.siber.data.2$community_names) |>
as.character()
c_names <- demo.siber.data.2 |>
dplyr::distinct(community, community_names)
demo_siber_data <- demo.siber.data.2 |>
dplyr::select(iso1:community)
siber_example <- createSiberObject(demo_siber_data)
mu_post <- extractPosteriorMeans(siber_example, post_sam_siber)
# ---- layman metrics ----
layman_b <- bayesianLayman(mu.post = mu_post)
layman_ml <- communityMetricsML(siber_example)
# unit test for extract_sigma
test_that("test if it doesn't error with basic siber object ", {
expect_no_error(
df_laymen <- extract_layman(
data = layman_b, community_df = c_names
)
)
})
# Test if data is not a list
test_that("data is not a list", {
data_not_list <- 1:5
cn <- data.frame(
name = "1",
community = "3"
)
expect_error(
extract_layman(data = data_not_list,
type = "bay",
community_df = cn
), "The `data` argument must be a list.")
})
# Test if community_df is not a data.frame
test_that("community_df is not a data.frame", {
data_list <- list(a = 1, b = 2)
community_df_not_df <- matrix(1:10, nrow = 5, ncol = 2)
expect_error(
extract_layman(layman_b, community_df_not_df,
type = "bay"),
"The `community_df` argument must be a data.frame.")
})
# Test if community_df does not have 2 columns
test_that("community_df does not have 2 columns", {
data_list <- list(a = 1, b = 2)
community_df_not_2_columns <- data.frame(x = 1:5)
expect_error(
extract_layman(layman_b, community_df = community_df_not_2_columns),
"The `community_df` argument must be a data.frame with exactly two columns.")
})
# test if lenght of dataframe is correct for wide and long
test_that("test if lenght of wide and long siber object ", {
df_laymen <- extract_layman(
data = layman_b, community_df = c_names
)
# check the type returned data frame should be data frame
expect_s3_class(object = df_laymen, class = "data.frame")
# excreted dimensions
expected_rows <- 48000
expected_cols <- 5
# Check the dimensions using expect_equal
expect_equal(nrow(df_laymen), expected_rows,
info = "Number of rows is not as expected.")
expect_equal(ncol(df_laymen), expected_cols,
info = "Number of columns is not as expected.")
})
# test if lenght of dataframe is correct for wide and long
test_that("test if lenght of wide and long siber object ", {
df_laymen <- extract_layman(
data = layman_b, community_df = c_names, data_format = "wide"
)
# check the type returned data frame should be data frame
expect_s3_class(object = df_laymen, class = "data.frame")
# excreted dimensions
expected_rows <- 8000
expected_cols <- 8
# Check the dimensions using expect_equal
expect_equal(nrow(df_laymen), expected_rows,
info = "Number of rows is not as expected.")
expect_equal(ncol(df_laymen), expected_cols,
info = "Number of columns is not as expected.")
})
test_that("if type is supplid something other than ml or bay", {
expect_error(
extract_layman(
data = layman_b,
community_df = c_names,
type = "bayes"
),
regexp = "Invalid characters for 'type'. Allowed character strings are 'bay' or 'ml'.")
})
c_name_t <- demo.siber.data.2 |>
dplyr::distinct(community, community_names) |>
dplyr::rename(
com = community
)
test_that("if communioty_df has wrong name ", {
expect_error(
extract_layman(
data = layman_b,
community_df = c_name_t,
type = "bay"
),
regexp = "The data frame does not contain a column named 'community'.")
})
test_that("extract_layan throws an error when data is not a matrix", {
# Test with a data frame (not a matrix)
expect_error(
extract_layman(data = data.frame(community = 1:3),
type = "ml",
# community_df = c_names
),
"The `data` argument must be a matrix."
)
# Test with a numeric vector (not a matrix)
expect_error(
extract_layman(data = c(1, 2, 3), type = "ml",
# community_df = c_names
),
"The `data` argument must be a matrix."
)
# Test with a matrix (should not throw an error)
expect_silent(
extract_layman(data = layman_ml, type = "ml",
community_df = c_names)
)
})
# Write the test case
test_that("process_data produces correct output structure and transformations", {
result <- extract_layman(
data = layman_ml,
type = "ml",
community_df = c_names,
isotope_x = "13",
element_x = "C",
isotope_y = "15",
element_y = "N"
)
# Check that the result is a data frame
expect_s3_class(result, "data.frame")
# Check for the correct number of rows and columns
expect_equal(nrow(result), nrow(layman_ml) * ncol(layman_ml))
expect_true(all(c("metric", "community", "estimate", "labels") %in% names(result)))
# Verify specific values and transformations
expect_equal(result$metric[1], "dY_range")
expect_equal(unique(result$labels),
factor(c(paste0("\U03B4","", 15, "",
"N", "
Range"),
paste0("\U03B4","", 13, "",
"C", "
Range"),
"Total Area",
"Distance to
Centroid",
"Nearest
Neighbor
Distance",
"SD Nearest
Neighbor
Distance"),
levels = c(paste0("\U03B4","", 13, "",
"C", "
Range"),
paste0("\U03B4","", 15, "",
"N", "
Range"),
"Total Area",
"Distance to
Centroid",
"Nearest
Neighbor
Distance",
"SD Nearest
Neighbor
Distance"))
)
})