library(SIBER) # library(nichetools) # library(testthat) # create the siber object # str(demo.siber.data.2) demo.siber.data.2$community_names <- as.factor(demo.siber.data.2$community) demo.siber.data.2$community <- as.numeric(demo.siber.data.2$community_names) |> as.character() c_names <- demo.siber.data.2 |> dplyr::distinct(community, community_names) demo_siber_data <- demo.siber.data.2 |> dplyr::select(iso1:community) siber_example <- createSiberObject(demo_siber_data) mu_post <- extractPosteriorMeans(siber_example, post_sam_siber) # ---- layman metrics ---- layman_b <- bayesianLayman(mu.post = mu_post) layman_ml <- communityMetricsML(siber_example) # unit test for extract_sigma test_that("test if it doesn't error with basic siber object ", { expect_no_error( df_laymen <- extract_layman( data = layman_b, community_df = c_names ) ) }) # Test if data is not a list test_that("data is not a list", { data_not_list <- 1:5 cn <- data.frame( name = "1", community = "3" ) expect_error( extract_layman(data = data_not_list, type = "bay", community_df = cn ), "The `data` argument must be a list.") }) # Test if community_df is not a data.frame test_that("community_df is not a data.frame", { data_list <- list(a = 1, b = 2) community_df_not_df <- matrix(1:10, nrow = 5, ncol = 2) expect_error( extract_layman(layman_b, community_df_not_df, type = "bay"), "The `community_df` argument must be a data.frame.") }) # Test if community_df does not have 2 columns test_that("community_df does not have 2 columns", { data_list <- list(a = 1, b = 2) community_df_not_2_columns <- data.frame(x = 1:5) expect_error( extract_layman(layman_b, community_df = community_df_not_2_columns), "The `community_df` argument must be a data.frame with exactly two columns.") }) # test if lenght of dataframe is correct for wide and long test_that("test if lenght of wide and long siber object ", { df_laymen <- extract_layman( data = layman_b, community_df = c_names ) # check the type returned data frame should be data frame expect_s3_class(object = df_laymen, class = "data.frame") # excreted dimensions expected_rows <- 48000 expected_cols <- 5 # Check the dimensions using expect_equal expect_equal(nrow(df_laymen), expected_rows, info = "Number of rows is not as expected.") expect_equal(ncol(df_laymen), expected_cols, info = "Number of columns is not as expected.") }) # test if lenght of dataframe is correct for wide and long test_that("test if lenght of wide and long siber object ", { df_laymen <- extract_layman( data = layman_b, community_df = c_names, data_format = "wide" ) # check the type returned data frame should be data frame expect_s3_class(object = df_laymen, class = "data.frame") # excreted dimensions expected_rows <- 8000 expected_cols <- 8 # Check the dimensions using expect_equal expect_equal(nrow(df_laymen), expected_rows, info = "Number of rows is not as expected.") expect_equal(ncol(df_laymen), expected_cols, info = "Number of columns is not as expected.") }) test_that("if type is supplid something other than ml or bay", { expect_error( extract_layman( data = layman_b, community_df = c_names, type = "bayes" ), regexp = "Invalid characters for 'type'. Allowed character strings are 'bay' or 'ml'.") }) c_name_t <- demo.siber.data.2 |> dplyr::distinct(community, community_names) |> dplyr::rename( com = community ) test_that("if communioty_df has wrong name ", { expect_error( extract_layman( data = layman_b, community_df = c_name_t, type = "bay" ), regexp = "The data frame does not contain a column named 'community'.") }) test_that("extract_layan throws an error when data is not a matrix", { # Test with a data frame (not a matrix) expect_error( extract_layman(data = data.frame(community = 1:3), type = "ml", # community_df = c_names ), "The `data` argument must be a matrix." ) # Test with a numeric vector (not a matrix) expect_error( extract_layman(data = c(1, 2, 3), type = "ml", # community_df = c_names ), "The `data` argument must be a matrix." ) # Test with a matrix (should not throw an error) expect_silent( extract_layman(data = layman_ml, type = "ml", community_df = c_names) ) }) # Write the test case test_that("process_data produces correct output structure and transformations", { result <- extract_layman( data = layman_ml, type = "ml", community_df = c_names, isotope_x = "13", element_x = "C", isotope_y = "15", element_y = "N" ) # Check that the result is a data frame expect_s3_class(result, "data.frame") # Check for the correct number of rows and columns expect_equal(nrow(result), nrow(layman_ml) * ncol(layman_ml)) expect_true(all(c("metric", "community", "estimate", "labels") %in% names(result))) # Verify specific values and transformations expect_equal(result$metric[1], "dY_range") expect_equal(unique(result$labels), factor(c(paste0("\U03B4","", 15, "", "N", "
Range"), paste0("\U03B4","", 13, "", "C", "
Range"), "Total Area", "Distance to
Centroid", "Nearest
Neighbor
Distance", "SD Nearest
Neighbor
Distance"), levels = c(paste0("\U03B4","", 13, "", "C", "
Range"), paste0("\U03B4","", 15, "", "N", "
Range"), "Total Area", "Distance to
Centroid", "Nearest
Neighbor
Distance", "SD Nearest
Neighbor
Distance")) ) })