# ngme2 demo # doing replicate using INLA library(INLA) n = 500 z1 = arima.sim(n, model = list(ar = 0.5), sd = 0.5) # independent replication z2 = arima.sim(n, model = list(ar = 0.5), sd = 0.5) # from AR(1) process y = c(z1, z2) idx <- c(1:n, 1:n) repl <- rep(1:2, each=n) # use INLA formula <- y ~ -1 + f(idx, model="ar1", replicate = repl) res_inla <- inla( formula, family="gaussian", data = list(y=c(z1, z2), idx=idx, repl=repl) ) summary(res_inla) # use ngme2 formula <- y ~ -1 + f(idx, model="ar1", replicate = repl) res_ngme <- ngme( formula, family="gaussian", data = list(y=c(z1, z2), idx=idx, repl=repl) ) res_ngme # Doing simulation using ngme2 myar <- f(1:n, model="ar1", alpha = 0.75, noise=noise_nig( mu = -3, sigma = 2, nu = 2 )) W1 <- simulate(myar) W2 <- simulate(myar) Y = c(W1, W2) + rnorm(2*n, sd=0.9) res_ngme2 <- ngme( y ~ -1 + f(idx, model="ar1", replicate = repl, noise=noise_nig()), family="gaussian", data = list(y=Y, idx=idx, repl=repl), control = control_opt( iterations = 1000 ) ) res_ngme2 plot(myar$noise, res_ngme2$models[["field1"]]$noise)