test_that("get_downloads runs as expected.", { ## we don't want this to run on CRAN skip_on_cran() brazil <- '{"type": "Polygon", "coordinates": [[ [-73.125, -9.102], [-56.953, -33.138], [-36.563, -7.711], [-68.203, 13.923], [-73.125, -9.102] ]]}' # We can make the geojson a spatial object if we want to use the # functionality of the `sf` package. brazil_sf <- geojsonsf::geojson_sf(brazil) brazil_datasets_sf <- get_datasets(loc = brazil_sf[1], all_data = TRUE) brazil_datasets <- get_datasets(loc = brazil, all_data = TRUE) expect_equivalent(brazil_datasets, brazil_datasets_sf) brazil_dl <- get_downloads(brazil_datasets) expect_identical(nrow(getids(brazil_datasets)), nrow(getids(brazil_dl))) expect_equal(getids(brazil_datasets), getids(brazil_dl)) }) test_that("get_downloads yields same get_datasets ids II", { ## we don't want this to run on CRAN skip_on_cran() core_sites <- c(13949, 11904, 13319, 728, 13248, 2625, 2806, 13280, 519, 11745, 273, 13956, 11880, 13321, 9801, 13698, 11816, 13909, 13921) df1 <- get_sites(core_sites) %>% get_datasets() %>% get_downloads() %>% getids() df2 <- get_sites(core_sites) %>% get_datasets() %>% getids() # The get_downloads limit happens, so we have fewer rows in df1 expect_lte(nrow(df1), nrow(df2)) expect_true(all(unique(df1$datasetid) %in% unique(df2$datasetid))) })