test_that("get_datasets numeric runs.", { ## we don't want this to run on CRAN skip_on_cran() dataset_1001 <- neotoma2::get_datasets(1001) # Check that sites' id matches 1001 datasets_ids <- neotoma2::getids(dataset_1001) %>% dplyr::select(datasetid) %>% unique() testthat::expect_equivalent(datasets_ids, "1001") }) test_that("get_datasets runs as a vector with length defined by vector or limit.", { ## we don't want this to run on CRAN skip_on_cran() datasets_ob <- get_datasets(c(1001, 2001, 15, 24)) datasets_vec <- getids(datasets_ob) %>% dplyr::select(datasetid) %>% unique() %>% unlist() datasets_long <- get_datasets(seq(1, 1000), limit = 10) # Check that sites' id matches 1001 expect_setequal(datasets_vec, c(1001, 2001, 15, 24)) expect_length(datasets_ob, 4) expect_length(datasets_long, 10) }) test_that("get_datasets loc runs.", { ## we don't want this to run on CRAN skip_on_cran() brazil <- '{"type": "Polygon", "coordinates": [[ [-73.125, -9.102], [-56.953, -33.138], [-36.563, -7.711], [-68.203, 13.923], [-73.125, -9.102] ]]}' brazil_sf <- geojsonsf::geojson_sf(brazil) brazil_datasets <- get_datasets(loc = brazil[1], datasettype = "pollen") # Check that datasset types names are only pollen sum <- summary(brazil_datasets) # Should be at least as many datasets as sites: expect_lte(length(brazil_datasets), nrow(sum)) expect_equivalent(nrow(sum), nrow(getids(brazil_datasets))) # All datasets should be pollen: expect_equivalent(unique(sum$type), "pollen") }) # Testing arguments such as `altmin`, `altmax` # test_that("get_datasets runs as expected using altitude.", { # ## we don't want this to run on CRAN # skip_on_cran() # # altmin <- 100 # altmax <- 250 # # ds <- get_datasets(altmin = altmin, altmax = altmax) # ds_df <- as.data.frame(ds) # altitudes <- ds_df$elev # # expect_gte(min(as.data.frame(ds)$elev), 100) # expect_lte(max(as.data.frame(ds)$elev), 250) # # # }) test_that("get_datasets runs as expected.", { ## we don't want this to run on CRAN skip_on_cran() brazil <- '{"type": "Polygon", "coordinates": [[ [-73.125, -9.102], [-56.953, -33.138], [-36.563, -7.711], [-68.203, 13.923], [-73.125, -9.102] ]]}' brazil_sf <- geojsonsf::geojson_sf(brazil) brazil_datasets <- get_datasets(loc = brazil[1], datasettype = "pollen") # Check that datasset types names are only pollen brazil_unique_sites <- length(unique(getids(brazil_datasets)$siteid)) brazil_datasets_length <- length(brazil_datasets) expect_equal(brazil_datasets_length, brazil_unique_sites) }) test_that("all_data + loc work", { skip_on_cran() europe_json <- '{"type": "Polygon", "coordinates": [[ [-73.125, -9.102], [-56.953, -33.138], [-36.563, -7.711], [-68.203, 13.923], [-73.125, -9.102] ]]}' data_short <- get_datasets(loc = europe_json[1]) data_long <- get_datasets(loc = europe_json[1], all_data = TRUE) testthat::expect_gt(length(data_long), length(data_short)) })