testthat::test_that("trauma_03 produces expected results", { # Synthetic test data 1 # for testing a first and last pain scale column test_data1 <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), epatient_15 = c(34, 5, 45, 2, 60), # Ages epatient_16 = c("Years", "Years", "Years", "Months", "Years"), eresponse_05 = rep(2205001, 5), esituation_02 = rep("Yes", 5), evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")), evitals_27_1 = c(0, 2, 4, 6, 8), evitals_27_2 = c(0, 1, 3, 5, 7), edisposition_28 = rep(4228001, 5), edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007) ) # Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps test_data_expanded1 <- test_data1 |> tidyr::uncount(weights = 3) |> # Repeat each row 3 times dplyr::group_by(erecord_01) |> dplyr::mutate( time_offset = dplyr::case_when( dplyr::row_number() == 1 ~ -5, # 5 minutes earlier dplyr::row_number() == 2 ~ 0, # Original time dplyr::row_number() == 3 ~ 5 # 5 minutes later ), evitals_01 = evitals_01 + lubridate::dminutes(time_offset) ) |> dplyr::ungroup() |> dplyr::select(-time_offset) # Remove temporary column # Synthetic test data 2 # for testing a single pain scale column test_data2 <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), epatient_15 = c(34, 5, 45, 2, 60), # Ages epatient_16 = c("Years", "Years", "Years", "Months", "Years"), eresponse_05 = rep(2205001, 5), esituation_02 = rep("Yes", 5), evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")), edisposition_28 = rep(4228001, 5), edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007) ) # Expand data so each erecord_01 has 2 rows (one for each pain score) test_data_expanded2 <- test_data2 |> tidyr::uncount(weights = 2) |> # Duplicate each row twice dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores dplyr::group_by(erecord_01) |> dplyr::mutate( time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time evitals_01 = evitals_01 + lubridate::dminutes(time_offset) ) |> dplyr::ungroup() |> dplyr::select(-time_offset) # Remove temporary column # Run function with the first and last pain score columns result_1 <- trauma_03( df = test_data_expanded1, erecord_01_col = erecord_01, epatient_15_col = epatient_15, epatient_16_col = epatient_16, eresponse_05_col = eresponse_05, esituation_02_col = esituation_02, evitals_01_col = evitals_01, evitals_27_initial_col = evitals_27_1, evitals_27_last_col = evitals_27_2, evitals_27_col = NULL, edisposition_28_col = edisposition_28, transport_disposition_col = edisposition_30 ) # Check structure testthat::expect_s3_class(result_1, "data.frame") testthat::expect_true(all(c("measure", "pop", "numerator", "denominator", "prop", "prop_label") %in% names(result_1))) # Check calculations testthat::expect_equal(sum(result_1$numerator), 7) testthat::expect_equal(sum(result_1$denominator), 7) testthat::expect_equal(result_1$prop[result_1$pop == "Adults"], 1) testthat::expect_equal(nrow(result_1), 3) # Run function with the single pain score column result_2 <- trauma_03( df = test_data_expanded2, erecord_01_col = erecord_01, epatient_15_col = epatient_15, epatient_16_col = epatient_16, eresponse_05_col = eresponse_05, esituation_02_col = esituation_02, evitals_01_col = evitals_01, evitals_27_initial_col = NULL, evitals_27_last_col = NULL, evitals_27_col = evitals_27, edisposition_28_col = edisposition_28, transport_disposition_col = edisposition_30 ) # Check structure testthat::expect_s3_class(result_2, "data.frame") testthat::expect_true(all(c("measure", "pop", "numerator", "denominator", "prop", "prop_label") %in% names(result_2))) # Check calculations testthat::expect_equal(sum(result_2$numerator), 7) testthat::expect_equal(sum(result_2$denominator), 7) testthat::expect_equal(result_2$prop[result_2$pop == "Adults"], 1) testthat::expect_equal(nrow(result_2), 3) # create tables to test correct functioning patient_table <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01", "2025-01-01", "2025-06-01")), patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01", "2023-01-01", "1970-06-01")), epatient_15 = c(25, 5, 2, 2, 55), # Ages epatient_16 = c("Years", "Years", "Years", "Years", "Years") ) # response table response_table <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), eresponse_05 = rep(2205001, 5) ) # situation table situation_table <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), esituation_02 = rep("Yes", 5), ) # vitals table for first and last pain scale columns vitals_table_1 <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")), evitals_27_1 = c(0, 2, 4, 6, 8), evitals_27_2 = c(0, 1, 3, 5, 7) ) |> tidyr::uncount(weights = 3) |> # Repeat each row 3 times dplyr::group_by(erecord_01) |> dplyr::mutate( time_offset = dplyr::case_when( dplyr::row_number() == 1 ~ -5, # 5 minutes earlier dplyr::row_number() == 2 ~ 0, # Original time dplyr::row_number() == 3 ~ 5 # 5 minutes later ), evitals_01 = evitals_01 + lubridate::dminutes(time_offset) ) |> dplyr::ungroup() |> dplyr::select(-time_offset) # Remove temporary column # vitals table for a single pain scale column vitals_table_2 <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")) ) |> tidyr::uncount(weights = 2) |> # Duplicate each row twice dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores dplyr::group_by(erecord_01) |> dplyr::mutate( time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time evitals_01 = evitals_01 + lubridate::dminutes(time_offset) ) |> dplyr::ungroup() |> dplyr::select(-time_offset) # Remove temporary column disposition_table <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), edisposition_28 = rep(4228001, 5), edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007) ) # test the success of the function # use the initial and last pain scale columns result_3 <- trauma_03(patient_scene_table = patient_table, response_table = response_table, situation_table = situation_table, vitals_table = vitals_table_1, disposition_table = disposition_table, erecord_01_col = erecord_01, epatient_15_col = epatient_15, epatient_16_col = epatient_16, eresponse_05_col = eresponse_05, esituation_02_col = esituation_02, evitals_01_col = evitals_01, evitals_27_initial_col = evitals_27_1, evitals_27_last_col = evitals_27_2, evitals_27_col = NULL, edisposition_28_col = edisposition_28, transport_disposition_col = edisposition_30 ) # Check calculations testthat::expect_equal(sum(result_3$numerator), 8) testthat::expect_equal(sum(result_3$denominator), 8) testthat::expect_equal(result_3$prop[result_3$pop == "Adults"], 1) testthat::expect_equal(nrow(result_3), 3) # test the success of the function # use the single pain scale column result_4 <- trauma_03(patient_scene_table = patient_table, response_table = response_table, situation_table = situation_table, vitals_table = vitals_table_2, disposition_table = disposition_table, erecord_01_col = erecord_01, epatient_15_col = epatient_15, epatient_16_col = epatient_16, eresponse_05_col = eresponse_05, esituation_02_col = esituation_02, evitals_01_col = evitals_01, evitals_27_initial_col = NULL, evitals_27_last_col = NULL, evitals_27_col = evitals_27, edisposition_28_col = edisposition_28, transport_disposition_col = edisposition_30 ) # Check calculations testthat::expect_equal(sum(result_4$numerator), 8) testthat::expect_equal(sum(result_4$denominator), 8) testthat::expect_equal(result_4$prop[result_4$pop == "Adults"], 1) testthat::expect_equal(nrow(result_4), 3) }) testthat::test_that("trauma_03 handles missing data correctly", { # Synthetic test data 1 # for testing a first and last pain scale column test_data1 <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), epatient_15 = c(34, 5, 45, 2, 60), # Ages epatient_16 = c("Years", "Years", "Years", "Months", "Years"), eresponse_05 = rep(2205001, 5), esituation_02 = rep("Yes", 5), evitals_01 = lubridate::as_datetime(c(NA, "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")), evitals_27_1 = c(0, 2, 4, 6, NA), evitals_27_2 = c(0, 1, 3, 5, NA), edisposition_28 = rep(4228001, 5), edisposition_30 = c(4230001, NA, 4230001, 4230007, NA) ) # Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps test_data_expanded1 <- test_data1 |> tidyr::uncount(weights = 3) |> # Repeat each row 3 times dplyr::group_by(erecord_01) |> dplyr::mutate( time_offset = dplyr::case_when( dplyr::row_number() == 1 ~ -5, # 5 minutes earlier dplyr::row_number() == 2 ~ 0, # Original time dplyr::row_number() == 3 ~ 5 # 5 minutes later ), evitals_01 = evitals_01 + lubridate::dminutes(time_offset) ) |> dplyr::ungroup() |> dplyr::select(-time_offset) # Remove temporary column # Synthetic test data 2 # for testing a single pain scale column test_data2 <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), epatient_15 = c(34, 5, 45, 2, 60), # Ages epatient_16 = c("Years", "Years", "Years", "Months", "Years"), eresponse_05 = rep(2205001, 5), esituation_02 = rep("Yes", 5), evitals_01 = lubridate::as_datetime(c(NA, "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")), edisposition_28 = rep(4228001, 5), edisposition_30 = c(4230001, NA, 4230001, 4230007, NA) ) # Expand data so each erecord_01 has 2 rows (one for each pain score) test_data_expanded2 <- test_data2 |> tidyr::uncount(weights = 2) |> # Duplicate each row twice dplyr::mutate(evitals_27 = c(0, 0, 2, NA, 4, 3, 6, 5, 8, NA)) |> # Assign pain scores dplyr::group_by(erecord_01) |> dplyr::mutate( time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time evitals_01 = evitals_01 + lubridate::dminutes(time_offset) ) |> dplyr::ungroup() |> dplyr::select(-time_offset) # Remove temporary column # run the function with first and last # pain scale columns result_1 <- trauma_03( df = test_data_expanded1, erecord_01_col = erecord_01, epatient_15_col = epatient_15, epatient_16_col = epatient_16, eresponse_05_col = eresponse_05, esituation_02_col = esituation_02, evitals_01_col = evitals_01, evitals_27_initial_col = evitals_27_1, evitals_27_last_col = evitals_27_2, evitals_27_col = NULL, edisposition_28_col = edisposition_28, transport_disposition_col = edisposition_30 ) testthat::expect_true(nrow(result_1) > 0) testthat::expect_true(all(!is.na(result_1$denominator))) # run the function with the single pain scale # column result_2 <- trauma_03( df = test_data_expanded2, erecord_01_col = erecord_01, epatient_15_col = epatient_15, epatient_16_col = epatient_16, eresponse_05_col = eresponse_05, esituation_02_col = esituation_02, evitals_01_col = evitals_01, evitals_27_initial_col = NULL, evitals_27_last_col = NULL, evitals_27_col = evitals_27, edisposition_28_col = edisposition_28, transport_disposition_col = edisposition_30 ) testthat::expect_true(nrow(result_2) > 0) testthat::expect_true(all(!is.na(result_2$denominator))) }) testthat::test_that("trauma_03 returns empty result for non-matching criteria", { # Synthetic test data 1 # for testing a first and last pain scale column test_data1 <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), epatient_15 = c(34, 5, 45, 2, 60), # Ages epatient_16 = c("Years", "Years", "Years", "Months", "Years"), eresponse_05 = rep(2205001, 5), esituation_02 = rep("Yes", 5), evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")), evitals_27_1 = c(0, 2, 4, 6, 8), evitals_27_2 = c(0, 1, 3, 5, 7), edisposition_28 = rep(4228001, 5), edisposition_30 = rep("not a transport", 5) ) # Expand data so each erecord_01 has 3 corresponding evitals_01 timestamps test_data_expanded1 <- test_data1 |> tidyr::uncount(weights = 3) |> # Repeat each row 3 times dplyr::group_by(erecord_01) |> dplyr::mutate( time_offset = dplyr::case_when( dplyr::row_number() == 1 ~ -5, # 5 minutes earlier dplyr::row_number() == 2 ~ 0, # Original time dplyr::row_number() == 3 ~ 5 # 5 minutes later ), evitals_01 = evitals_01 + lubridate::dminutes(time_offset) ) |> dplyr::ungroup() |> dplyr::select(-time_offset) # Remove temporary column # Synthetic test data 2 # for testing a single pain scale column test_data2 <- tibble::tibble( erecord_01 = c("R1", "R2", "R3", "R4", "R5"), epatient_15 = c(34, 5, 45, 2, 60), # Ages epatient_16 = c("Years", "Years", "Years", "Months", "Years"), eresponse_05 = rep(2205001, 5), esituation_02 = rep("Yes", 5), evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01 14:00:00")), edisposition_28 = rep(4228001, 5), edisposition_30 = rep("not a transport", 5) ) # Expand data so each erecord_01 has 2 rows (one for each pain score) test_data_expanded2 <- test_data2 |> tidyr::uncount(weights = 2) |> # Duplicate each row twice dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |> # Assign pain scores dplyr::group_by(erecord_01) |> dplyr::mutate( time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0), # Lower score = later time evitals_01 = evitals_01 + lubridate::dminutes(time_offset) ) |> dplyr::ungroup() |> dplyr::select(-time_offset) # Remove temporary column # run the function with the # initial and last pain scale # columns result_1 <- trauma_03( df = test_data_expanded1, erecord_01_col = erecord_01, epatient_15_col = epatient_15, epatient_16_col = epatient_16, eresponse_05_col = eresponse_05, esituation_02_col = esituation_02, evitals_01_col = evitals_01, evitals_27_initial_col = evitals_27_1, evitals_27_last_col = evitals_27_2, evitals_27_col = NULL, edisposition_28_col = edisposition_28, transport_disposition_col = edisposition_30 ) testthat::expect_equal(sum(result_1$denominator), 0) # run the function with the # single pain scale # column result_2 <- trauma_03( df = test_data_expanded2, erecord_01_col = erecord_01, epatient_15_col = epatient_15, epatient_16_col = epatient_16, eresponse_05_col = eresponse_05, esituation_02_col = esituation_02, evitals_01_col = evitals_01, evitals_27_initial_col = NULL, evitals_27_last_col = NULL, evitals_27_col = evitals_27, edisposition_28_col = edisposition_28, transport_disposition_col = edisposition_30 ) testthat::expect_equal(sum(result_2$denominator), 0) })