source("libtest.R") test_that("mc_agg UTC", { data <- mc_read_files("../data/clean-datetime_step", "TOMST", clean=FALSE) expect_error(hour_data <- mc_agg(data, "percentile", "hour", use_utc = TRUE, percentiles = c(10, 50, 90), min_coverage = 0)) expect_warning(cleaned_data <- mc_prep_clean(data, silent=T)) hour_data <- mc_agg(cleaned_data, "percentile", "hour", use_utc = TRUE, percentiles = c(10, 50, 90), min_coverage = 0) test_agg_data_format(hour_data) expect_equal(length(hour_data$localities[["94184102"]]$sensors), 12) expect_equal(hour_data$metadata@step, 60*60) expect_equal(hour_data$metadata@period, "hour") agg_data <- mc_agg(cleaned_data) test_agg_data_format(agg_data) expect_equal(length(agg_data$localities[["94184102"]]$sensors), 4) hour2_data <- mc_agg(agg_data, "percentile", "2 hours", use_utc = TRUE, percentiles = c(10, 50, 90), min_coverage = 0) test_agg_data_format(hour2_data) expect_equal(length(hour2_data$localities[["94184102"]]$sensors), 12) expect_equal(hour2_data$metadata@step, 2*60*60) expect_equal(hour2_data$metadata@period, "2 hours") }) test_that("mc_agg day functions", { data <- mc_read_files("../data/agg", "TOMST", silent=T) data <- mc_prep_meta_locality(data, list(`91184101`=60), "tz_offset") agg_data <- mc_agg(data, c("min", "max", "mean", "percentile", "sum", "range", "count", "coverage"), "day", percentiles=50, use_utc=FALSE, min_coverage=1) test_agg_data_format(agg_data) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_min$values, c(NA, 4.125), tolerance = 1e-3) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_max$values, c(NA, 11.3125), tolerance = 1e-3) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_mean$values, c(NA, 8.434896), tolerance = 1e-3) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_percentile50$values, c(NA, 8.4375), tolerance = 1e-3) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_sum$values, c(NA, 809.75), tolerance = 1e-3) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_range$values, c(NA, 11.3125 - 4.125), tolerance = 1e-3) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_count$values, c(87, 96)) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_coverage$values, c(87/96, 1), tolerance = 1e-3) agg_data <- mc_agg(data, c(Thermo_T=c("min", "max")), "day", use_utc=FALSE, min_coverage = 0) expect_equal(length(agg_data$localities$`91184101`$sensors), 2) test_agg_data_format(agg_data) mc_agg(agg_data, "mean", "week", use_utc=FALSE) }) test_that("mc_agg empty data", { data <- get_empty_raw_data() expect_error(expect_warning(agg_data <- mc_agg(data))) data <- mc_read_data("../data/TOMST/files_table.csv", "../data/TOMST/localities_table.csv", silent=T) expect_error(expect_warning(agg_data <- mc_agg(data, "min", "day", use_utc = TRUE, min_coverage=0))) data <- mc_load("../data/agg/without_data.RDS") expect_warning(agg_data <- mc_agg(data)) expect_warning(agg_data <- mc_agg(data, "min", "hour", use_utc = TRUE, min_coverage=0)) }) test_that("mc_agg 90s step", { table <- read.csv("../data/agg-short-step/step_90s_long.csv", stringsAsFactors = FALSE) table$datetime <- lubridate::ymd_hms(table$datetime) table$locality_id <- as.character(table$locality_id) data <- mc_read_long(table, sensor_ids = list("Temp" = mc_const_SENSOR_HOBO_T, "RH" = mc_const_SENSOR_HOBO_RH, "Wind" = mc_const_SENSOR_wind_speed), clean = TRUE, silent = TRUE) test_raw_data_format(data) expect_equal(data$localities$`172`$loggers[[1]]$clean_info@step, 90) agg_data <- mc_agg(data, period = "2 min", fun = "mean") agg_data <- mc_agg(data, period = "all", fun = "mean") expect_equal(agg_data$localities$`172`$sensors$Temp_mean$values, mean(data$localities$`172`$loggers[[1]]$sensors$Temp$values)) }) test_that("mc_agg 10s step", { table <- read.csv("../data/agg-short-step/step_10s_long.csv", stringsAsFactors = FALSE) table$datetime <- lubridate::ymd_hms(table$datetime) table$locality_id <- as.character(table$locality_id) data <- mc_read_long(table, sensor_ids = list("Temp" = mc_const_SENSOR_HOBO_T, "RH" = mc_const_SENSOR_HOBO_RH, "Wind" = mc_const_SENSOR_wind_speed), clean = TRUE, silent = TRUE) expect_equal(data$localities$`172`$loggers[[1]]$clean_info@step, 10) expect_equal(data$localities$`172`$loggers[[1]]$clean_info@count_duplicities, 0) expect_equal(data$localities$`172`$loggers[[1]]$clean_info@count_missing, 0) expect_equal(data$localities$`172`$loggers[[1]]$clean_info@count_disordered, 0) agg_data <- mc_agg(data, period = "1 min", fun = "mean") all_data <- mc_agg(data, period = "all", fun = "mean") }) test_that("mc_agg solar aggregation", { data <- mc_read_data("../data/solar_agg/files_table.csv", "../data/solar_agg/localities_table.csv", silent=T) data <- mc_prep_solar_tz(data) expect_error(agg_data <- mc_agg(data, c("min", "max"), "hour", use_utc=FALSE, na.rm=FALSE)) agg_data <- mc_agg(data, c("min", "max"), "day", use_utc=FALSE) test_agg_data_format(agg_data) expect_equal(length(agg_data$localities$A1E05$sensors), 2) test_agg_data_format(agg_data) }) test_that("mc_agg UTC many NA", { cleaned_data <- mc_read_files("../data/clean-datetime_step/data_94184165_0.csv", "TOMST", silent=T) agg_data <- mc_agg(cleaned_data, c("min", "max", "mean", "percentile", "sum", "count", "coverage"), "hour", percentiles=50, min_coverage=0) expect_true(is.na(agg_data$localities[["94184165"]]$sensors$TMS_T1_min$values[[2]])) expect_true(is.na(agg_data$localities[["94184165"]]$sensors$TMS_T1_max$values[[2]])) expect_true(is.na(agg_data$localities[["94184165"]]$sensors$TMS_T1_mean$values[[2]])) expect_true(is.na(agg_data$localities[["94184165"]]$sensors$TMS_T1_percentile50$values[[2]])) expect_true(is.na(agg_data$localities[["94184165"]]$sensors$TMS_T1_sum$values[[2]])) }) test_that("mc_agg long period", { data <- mc_read_files("../data/agg-month", "TOMST", silent=T) data <- mc_prep_meta_locality(data, list(`91184101`=60), "tz_offset") agg_data <- mc_agg(data, "mean", "week", use_utc=FALSE) test_agg_data_format(agg_data) expect_equal(agg_data$metadata@period, "week") expect_equal(agg_data$localities$`91184101`$datetime[[1]], lubridate::ymd_h("2020-10-26 00")) expect_false(is.na(agg_data$metadata@step)) expect_true(any(is.na(agg_data$localities[["91184101"]]$sensors$Thermo_T_mean$values))) agg_data <- mc_agg(data, "mean", "month", use_utc=FALSE) test_agg_data_format(agg_data) expect_equal(agg_data$metadata@period, "month") expect_true(is.na(agg_data$metadata@step)) }) test_that("mc_agg all period", { data <- mc_read_files("../data/eco-snow", "TOMST", silent=T) all_data <- mc_agg(data, "mean", "all") test_agg_data_format(all_data) expect_equal(all_data$metadata@period, "all") expect_equal(all_data$metadata@intervals_start, lubridate::ymd_h("2021-01-01 00")) expect_equal(all_data$metadata@intervals_end, lubridate::ymd_hms("2021-01-31 23:59:59")) expect_equal(length(all_data$localities$`94184102`$datetime), 1) expect_equal(length(all_data$localities$`94184103`$datetime), 1) expect_false(is.na(all_data$localities$`94184102`$sensors$TMS_T1_mean$values[[1]])) expect_true(is.na(all_data$localities$`94184103`$sensors$TMS_T1_mean$values[[1]])) all_data <- mc_agg(data, "mean", "all", min_coverage=0) expect_false(is.na(all_data$localities$`94184102`$sensors$TMS_T1_mean$values[[1]])) expect_false(is.na(all_data$localities$`94184103`$sensors$TMS_T1_mean$values[[1]])) }) test_that("mc_agg agregate from longer to shorter period", { data <- mc_read_files("../data/eco-snow", "TOMST", silent=T) agg_data <- mc_agg(data, "min", "day", min_coverage=0) expect_error(mc_agg(agg_data, "min", "hour", min_coverage=0)) }) test_that("mc_agg logical sensor", { data <- mc_read_files("../data/eco-snow/data_94184102_0.csv", "TOMST", silent=T) agg_data <- mc_agg(data) agg_data <- mc_calc_snow(agg_data, "TMS_T3", tmax=0.5) week_agg_data <- mc_agg(agg_data, list(snow=c("min", "max", "mean", "percentile", "sum", "count", "coverage")), "week", percentiles = 20) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_min$values, c(NA, F, F, F, F)) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_max$values, c(NA, T, F, F, F)) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_mean$values, c(NA, T, F, F, F)) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_percentile20$values, c(NA, F, F, F, F)) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_sum$metadata@sensor_id, mc_const_SENSOR_integer) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_sum$values, c(NA, 378, 0, 0, 0)) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_count$values, c(288, 672, 672, 672, 672)) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_count$metadata@sensor_id, "count") expect_equal(week_agg_data$localities$`94184102`$sensors$snow_coverage$values, c(288/672, 1, 1, 1, 1)) expect_equal(week_agg_data$localities$`94184102`$sensors$snow_coverage$metadata@sensor_id, "coverage") }) test_that("mc_agg integer sensor", { data <- mc_read_files("../data/TOMST/data_94184102_0.csv", "TOMST", silent=T) agg_data <- mc_agg(data, list(TMS_moist=c("min", "max", "mean", "percentile", "sum", "count", "coverage")), "hour", percentiles = 10) expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_min$values[[1]], 1551) expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_max$values[[1]], 1551) expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_mean$values[[2]], 1552) expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_percentile10$values[[8]], 1549) expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_sum$values[[1]], 6204) expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_count$values[[1]], 4) expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_count$metadata@sensor_id, "count") expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_coverage$values[[1]], 1) expect_equal(agg_data$localities$`94184102`$sensors$TMS_moist_coverage$metadata@sensor_id, "coverage") }) test_that("mc_agg reaggregate", { not_applicable_format_warning(data <- mc_read_files("../data/TOMST/", "TOMST", silent=T)) %>% not_applicable_format_warning() %>% not_applicable_format_warning() agg_data <- mc_agg(data) agg_all <- mc_agg(agg_data, period = "all", fun = "mean") test_agg_data_format(agg_all) }) test_that("mc_agg merging loggers", { files_table <- read.table("../data/TOMST/files_table.csv", header = TRUE, sep = ",", stringsAsFactors = FALSE) files_table$locality_id <- "A6W79" files_table$path <- purrr::map(files_table$path, ~ file.path("../data/TOMST", .x)) data <- mc_read_data(files_table, silent=T) expect_warning(agg_data <- mc_agg(data), "sensor TMS_T1 is renamed to TMS_T1_1") %>% expect_warning("sensor TMS_T2 is renamed to TMS_T2_1") %>% expect_warning("sensor TMS_T3 is renamed to TMS_T3_1") %>% expect_warning("sensor TMS_moist is renamed to TMS_moist_1") test_agg_data_format(agg_data) expect_equal(length(agg_data$localities$A6W79$sensors), 9) }) test_that(".agg_get_custom_intervals", { test_function_parse <- if(exists(".agg_parse_custom_dates")) .agg_parse_custom_dates else .agg_parse_custom_dates test_function <- if(exists(".agg_get_custom_intervals")) .agg_get_custom_intervals else .agg_get_custom_intervals custom_dates <- test_function_parse("04-01", NULL) intervals <- test_function(lubridate::interval(lubridate::ymd(20220501), lubridate::ymd(20230104)), custom_dates) expect_equal(intervals[[1]], lubridate::interval(lubridate::ymd(20220401), lubridate::ymd_hms("2023-03-31 23:59:59"))) intervals <- test_function(lubridate::interval(lubridate::ymd(20210301), lubridate::ymd(20230104)), custom_dates) expect_equal(intervals, c(lubridate::interval(lubridate::ymd(20200401), lubridate::ymd_hms("2021-03-31 23:59:59")), lubridate::interval(lubridate::ymd(20210401), lubridate::ymd_hms("2022-03-31 23:59:59")), lubridate::interval(lubridate::ymd(20220401), lubridate::ymd_hms("2023-03-31 23:59:59")))) custom_dates <- test_function_parse("03-01", NULL) intervals <- test_function(lubridate::interval(lubridate::ymd(20190501), lubridate::ymd(20200404)), custom_dates) expect_equal(intervals, c(lubridate::interval(lubridate::ymd(20190301), lubridate::ymd_hms("2020-02-29 23:59:59")), lubridate::interval(lubridate::ymd(20200301), lubridate::ymd_hms("2021-02-28 23:59:59")))) custom_dates <- test_function_parse("03-10 12:00", "09-06 8:00") intervals <- test_function(lubridate::interval(lubridate::ymd(20200101), lubridate::ymd(20230101)), custom_dates) }) test_that("mc_agg custom", { table <- readRDS("../data/agg-custom/air_humidity.rds") data <- mc_read_wide(table, sensor_id = "RH", "humidity", silent=T) expect_error(agg_data <- mc_agg(data, "mean", period = "custom")) agg_data <- mc_agg(data, "mean", period = "custom", custom_start = "11-01") test_agg_data_format(agg_data) expect_equal(agg_data$localities$B1BYSH01$datetime, c(lubridate::ymd_h("2017-11-01 00"), lubridate::ymd_h("2018-11-01 00"), lubridate::ymd_h("2019-11-01 00"), lubridate::ymd_h("2020-11-01 00"))) expect_equal(agg_data$metadata@period, "custom") expect_equal(agg_data$metadata@intervals_start, c(lubridate::ymd_h("2017-11-01 00"), lubridate::ymd_h("2018-11-01 00"), lubridate::ymd_h("2019-11-01 00"), lubridate::ymd_h("2020-11-01 00"))) expect_equal(agg_data$metadata@intervals_end, c(lubridate::ymd_hms("2018-10-31 23:59:59"), lubridate::ymd_hms("2019-10-31 23:59:59"), lubridate::ymd_hms("2020-10-31 23:59:59"), lubridate::ymd_hms("2021-10-31 23:59:59"))) expect_true(is.na(agg_data$metadata@step)) agg_data <- mc_agg(data, "mean", period = "custom", custom_start = "05-01", custom_end = "10-01") test_agg_data_format(agg_data) expect_equal(agg_data$localities$B1BYSH01$datetime, c(lubridate::ymd_h("2018-05-01 00"), lubridate::ymd_h("2019-05-01 00"), lubridate::ymd_h("2020-05-01 00"))) expect_equal(agg_data$metadata@period, "custom") expect_equal(agg_data$metadata@intervals_start, c(lubridate::ymd_h("2018-05-01 00"), lubridate::ymd_h("2019-05-01 00"), lubridate::ymd_h("2020-05-01 00"))) expect_equal(agg_data$metadata@intervals_end, c(lubridate::ymd_hms("2018-09-30 23:59:59"), lubridate::ymd_hms("2019-09-30 23:59:59"), lubridate::ymd_hms("2020-09-30 23:59:59"))) expect_false(is.na(agg_data$metadata@step)) agg_data <- mc_agg(data, "mean", period = "custom", custom_start = "12-01", custom_end = "03-01") test_agg_data_format(agg_data) expect_equal(agg_data$localities$B1BYSH01$datetime, c(lubridate::ymd_h("2017-12-01 00"), lubridate::ymd_h("2018-12-01 00"), lubridate::ymd_h("2019-12-01 00"), lubridate::ymd_h("2020-12-01 00"))) expect_equal(agg_data$metadata@period, "custom") expect_equal(agg_data$metadata@intervals_start, c(lubridate::ymd_h("2017-12-01 00"), lubridate::ymd_h("2018-12-01 00"), lubridate::ymd_h("2019-12-01 00"), lubridate::ymd_h("2020-12-01 00"))) expect_equal(agg_data$metadata@intervals_end, c(lubridate::ymd_hms("2018-02-28 23:59:59"), lubridate::ymd_hms("2019-02-28 23:59:59"), lubridate::ymd_hms("2020-02-29 23:59:59"), lubridate::ymd_hms("2021-02-28 23:59:59"))) expect_true(is.na(agg_data$metadata@step)) }) test_that("mc_agg shifted series", { files_table <- as.data.frame(tibble::tribble( ~path, ~locality_id, ~data_format, ~serial_number, "../data/clean-rounding/CZ2_HRADEC_TS.csv", "CZ2_HRADEC", "TOMST_join", NA_character_, "../data/clean-rounding/CZ2_HRADEC_TMS.csv", "CZ2_HRADEC", "TOMST_join", NA_character_, )) data <- mc_read_data(files_table, clean=FALSE, silent=TRUE) cleaned_data <- mc_prep_clean(data, silent=TRUE) expect_equal(cleaned_data$localities$CZ2_HRADEC$loggers[[1]]$clean_info@step, cleaned_data$localities$CZ2_HRADEC$loggers[[2]]$clean_info@step) expect_error(agg_data <- mc_agg(cleaned_data)) agg_data <- mc_agg(cleaned_data, "mean", "2 hours") expect_false(all(is.na(agg_data$localities$CZ2_HRADEC$sensors$Thermo_T_mean$values))) }) test_that("mc_agg custom functions", { data <- mc_read_files("../data/agg", "TOMST", silent=T) custom_functions <- list(frost_days=function(values){min(values) < 5}, first=function(values) {values[[1]]}) agg_data <- mc_agg(data, c("min", "frost_days", "first"), "hour", custom_functions=custom_functions) test_agg_data_format(agg_data) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_min$values < 5, agg_data$localities$`91184101`$sensors$Thermo_T_frost_days$values) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_frost_days$metadata@sensor_id, mc_const_SENSOR_logical) expect_equal(agg_data$localities$`91184101`$sensors$Thermo_T_first$metadata@sensor_id, mc_const_SENSOR_Thermo_T) }) test_that("mc_agg min_coverage", { data <- mc_read_files("../data/agg", "TOMST", silent=T) data <- mc_prep_meta_locality(data, list(`91184101`="ABC"), "locality_id") agg_data <- mc_agg(data, c("min", "coverage"), "12 hours", min_coverage = 0.9) test_agg_data_format(agg_data) expect_true(is.na(agg_data$localities$ABC$sensors$Thermo_T_min$values[[1]])) expect_true(is.na(agg_data$localities$ABC$sensors$Thermo_T_min$values[[2]])) expect_false(is.na(agg_data$localities$ABC$sensors$Thermo_T_min$values[[3]])) expect_false(is.na(agg_data$localities$ABC$sensors$Thermo_T_min$values[[5]])) agg_data <- mc_agg(data, c("min", "coverage"), "12 hours", min_coverage = 0.5) expect_true(is.na(agg_data$localities$ABC$sensors$Thermo_T_min$values[[1]])) expect_false(is.na(agg_data$localities$ABC$sensors$Thermo_T_min$values[[2]])) expect_false(is.na(agg_data$localities$ABC$sensors$Thermo_T_min$values[[5]])) agg_data <- mc_agg(data, c("min", "coverage"), "12 hours", min_coverage = 0) expect_false(is.na(agg_data$localities$ABC$sensors$Thermo_T_min$values[[1]])) })