data("ovarian_FDA") ovarian_FDA = run_fcm(ovarian_FDA, model_name = "fit_lfcm", formula = survival_time ~ age, event = "event", metric = "uni g", r = "r", value = "fundiff", analysis_vars = c("age", "survival_time"), afcm = FALSE) #keeping the code but commenting it out. #theres something with the dplyr selects that still reports i'm not using all_of test_that("output is correct class", { # ovarian_FDA = run_fcm(ovarian_FDA, model_name = "fit_lfcm", # formula = survival_time ~ age, event = "event", # metric = "uni g", r = "r", value = "fundiff", # analysis_vars = c("age", "survival_time"), # afcm = FALSE) expect_equal(class(ovarian_FDA)[1], "mxFDA") }) test_that("metric needs to be single element vector", { expect_error(run_fcm(ovarian_FDA, model_name = "fit_lfcm", formula = survival_time ~ age, event = "event", metric = c("uni g", "uni k"), r = "r", value = "fundiff", analysis_vars = c("age", "survival_time"), afcm = FALSE)) }) test_that("metric needs to have summary function calculate", { expect_error(run_fcm(ovarian_FDA, model_name = "fit_lfcm", formula = survival_time ~ age, event = "event", metric = "uni k", r = "r", value = "fundiff", analysis_vars = c("age", "survival_time"), afcm = FALSE)) }) test_that("event needs to be a column in metadata", { expect_error(run_fcm(ovarian_FDA, model_name = "fit_lfcm", formula = survival_time ~ age, event = "not_real_column", metric = "uni k", r = "r", value = "fundiff", analysis_vars = c("age", "survival_time"), afcm = FALSE)) }) test_that("event needs to be 0/1", { expect_error(run_fcm(ovarian_FDA, model_name = "fit_lfcm", formula = survival_time ~ age, event = "age", metric = "uni k", r = "r", value = "fundiff", analysis_vars = c("age", "survival_time"), afcm = FALSE)) })