R Under development (unstable) (2024-08-16 r87026 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library("mvtnorm") > > set.seed(29) > > chk <- function(...) stopifnot(isTRUE(all.equal(..., check.attributes = FALSE))) > > ### N samples with N different covariance matrices > > thischeck <- expression({ + N <- 10 + J <- 5 + lt <- ltMatrices(matrix(runif(N * J * (J + c(-1, 1)[dg + 1L]) / 2) + 1, ncol = N), + diag = dg) + lt <- ltMatrices(lt, diag = dg, byrow = br) + Z <- matrix(rnorm(N * J), ncol = N) + Y <- solve(lt, Z) + ll1 <- sum(dnorm(Mult(lt, Y), log = TRUE)) + sum(log(diagonals(lt))) + + S <- as.array(Tcrossprod(solve(lt))) + ll2 <- sum(l2 <- sapply(1:N, function(i) mvtnorm:::dmvnorm(x = Y[,i], sigma = S[,,i], log = TRUE))) + chk(ll1, ll2) + + l3 <- ldmvnorm(obs = Y, invchol = lt, logLik = FALSE) + l4 <- ldmvnorm(obs = Y, chol = solve(lt), logLik = FALSE) + + chk(l2, l3) + chk(l2, l4) + + ll1 <- sum(dnorm(Mult(lt[1,], Y), log = TRUE)) + N * sum(log(diagonals(lt[1,]))) + + S <- as.array(Tcrossprod(solve(lt))) + ll2 <- sum(l2 <- sapply(1:N, function(i) mvtnorm:::dmvnorm(x = Y[,i], sigma = S[,,1], log = TRUE))) + chk(ll1, ll2) + + l3 <- ldmvnorm(obs = Y, invchol = lt[1,], logLik = FALSE) + l4 <- ldmvnorm(obs = Y, chol = solve(lt[1,]), logLik = FALSE) + + chk(l2, l3) + chk(l2, l4) + + ### check scores + if (require("numDeriv", quietly = TRUE)) { + + f <- function(L) { + L <- ltMatrices(L, diag = dg, byrow = br) + ldmvnorm(obs = Y, invchol = L) + } + + s0 <- grad(f, unclass(lt)) + s1 <- sldmvnorm(obs = Y, invchol = lt) + + chk(Lower_tri(ltMatrices(matrix(s0, ncol = N), diag = dg, byrow = br), diag = dg), + Lower_tri(s1$invchol, diag = dg)) + + f <- function(L) { + L <- ltMatrices(L, diag = dg, byrow = br) + ldmvnorm(obs = Y, chol = L) + } + + s0 <- grad(f, unclass(lt)) + s1 <- sldmvnorm(obs = Y, chol = lt) + + chk(Lower_tri(ltMatrices(matrix(s0, ncol = N), diag = dg, byrow = br), diag = dg), + Lower_tri(s1$chol, diag = dg)) + + f <- function(x) + ldmvnorm(obs = x, invchol = lt) + + s0 <- grad(f, Y) + s1 <- sldmvnorm(obs = Y, invchol = lt) + + chk(matrix(s0, ncol = N), s1$obs) + } + }) > > dg <- TRUE > br <- FALSE > eval(thischeck) > > dg <- FALSE > br <- FALSE > eval(thischeck) > > dg <- FALSE > br <- TRUE > eval(thischeck) > > dg <- FALSE > br <- FALSE > eval(thischeck) > > > proc.time() user system elapsed 1.89 0.06 1.93