test_that("alpha_lt_0-fit_mvss", { ## create a 4x4 shape matrix symMat S <- matrix(rnorm(4*4, mean=2, sd=4),4); symMat <- as.matrix(Matrix::nearPD(0.5 * (S + t(S)))$mat) symMat ## generate 100 r.v.'s from 4-dimensional mvss X <- mvpd::rmvss(1e2, alpha=1.5, Q=symMat, delta=c(1,2,3,4)) ## use fit_mvss to recover the parameters, compare to symMat fmv <- mvpd::fit_mvss(X) fmv expect_identical(any(fmv$univ_alphas < 0), FALSE) }) test_that("alpha_ge_2-fit_mvss", { ## create a 4x4 shape matrix symMat S <- matrix(rnorm(4*4, mean=2, sd=4),4); symMat <- as.matrix(Matrix::nearPD(0.5 * (S + t(S)))$mat) symMat ## generate 100 r.v.'s from 4-dimensional mvss X <- mvpd::rmvss(1e2, alpha=1.5, Q=symMat, delta=c(1,2,3,4)) ## use fit_mvss to recover the parameters, compare to symMat fmv <- mvpd::fit_mvss(X) fmv expect_identical(any(fmv$univ_alphas >= 2), FALSE) })