library(mvord) data(data_mvord_toy) tolerance <- 1e-6 # convert data_mvord_toy into long format df <- cbind.data.frame("i" = rep(1:100,2), "j" = rep(1:2,each = 100), "Y" = c(data_mvord_toy$Y1,data_mvord_toy$Y2), "X1" = rep(data_mvord_toy$X1,2), "X2" = rep(data_mvord_toy$X2,2), "f1" = factor(sample(rep(data_mvord_toy$Y2,2)), ordered =F), "f2" = factor(rep(data_mvord_toy$Y1,2), ordered=F)) df_NA <- df[-c(1,90:110),] res <- mvord:::mvord(formula = MMO(Y, i, j) ~ 0 + X1 + X2, data = df_NA, #index = c("i", "j"), link = mvprobit(), control = mvord.control(solver = "newuoa"), #se = T, error.structure = cor_general(~1), threshold.constraints = c(1,2), coef.constraints = c(1,1)) print(res) summary(res) print(summary(res)) coef(res) thresholds(res) AIC(res) BIC(res) logLik(res) nobs(res) vcov(res) terms(res) model.matrix(res) fitted(res) constraints(res) names_constraints(Y ~ 0 + X1 + X2, df_NA) #predict functions marginal_predict(res, type = "prob", subjectID = c(2,5,32,88)) marginal_predict(res, type = "class", subjectID = c(2,5,32,88)+2) marginal_predict(res, type = "class") marginal_predict(res, type = "cum.prob", subjectID = c(2,5,32,88)+8) predict(res, type = "prob", subjectID = c(3,6,33,55,90)) predict(res, type = "class", subjectID = c(3,6,33,55,90)+1) predict(res, type = "cum.prob", subjectID = c(3,6,33,55,90)+2) joint_probabilities(res, response.cat = c(1,2)) joint_probabilities(res, response.cat = res$rho$y) joint_probabilities(res, type = "cum.prob", response.cat = c(1,2)) error_structure(res) newdata <- df[1:20,] newdata[,"i"] <- rep(1:10,2) newdata[,"j"] <- rep(1:2, each=10) #newdata[,"Y"] <- NA marginal_predict(res, type = "prob", newdata = newdata)#subjectID = c(2,5,32,88)) marginal_predict(res, type = "class", newdata = newdata)#subjectID = c(2,5,32,88)+2) marginal_predict(res, type = "linpred", newdata = newdata) marginal_predict(res, type = "cum.prob", newdata = newdata) marginal_predict(res, type = "all.prob", newdata = newdata) predict(res, type = "prob", newdata=newdata) predict(res, type = "class", newdata=newdata, subjectID = c(1:5)) predict(res, type = "cum.prob", newdata=newdata) joint_probabilities(res, response.cat = c(1,2), newdata=newdata) mat <- matrix(sample(1:3, 20, replace=T),ncol=2) joint_probabilities(res, response.cat = mat, newdata=newdata) joint_probabilities(res, response.cat = mat, type = "cum.prob", newdata=newdata) joint_probabilities(res, response.cat = mat, type = "cum.prob", newdata=newdata, subjectID = c(1,3))