context("update.mvgam") skip_on_cran() test_that("update() working correctly", { # Can update trend_model mod <- update(mvgam:::mvgam_example1, trend_model = AR(p = 2), run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(attr(mod$model_data, 'trend_model') == 'AR2') expect_true(any(grepl('ar2~std_normal();', gsub(' ', '', mod$model_file), fixed = TRUE))) expect_true(mod$call == mvgam:::mvgam_example1$call) # Update trend_model and formula mod <- update(mvgam:::mvgam_example1, formula = y ~ s(season, k = 6) - 1, trend_model = PW(), run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(attr(mod$model_data, 'trend_model') == 'PWlinear') expect_true(any(grepl('to_vector(delta_trend)~double_exponential(0,changepoint_scale);', gsub(' ', '', mod$model_file), fixed = TRUE))) expect_true(mod$call != mvgam:::mvgam_example1$call) expect_true(rlang::f_rhs(mod$call) == 's(season, k = 6) - 1') # Errors should pass from mvgam() expect_error(update(mvgam:::mvgam_example1, formula = y ~ s(season, k = 6) - 1, trend_model = PW(growth = 'logistic'), run_model = FALSE), 'Capacities must be supplied as a variable named "cap" for logistic growth') # Update to include shared observation params mod <- update(mvgam:::mvgam_example1, share_obs_params = TRUE, run_model = FALSE) expect_true(any(grepl('realsigma_obs;', gsub(' ', '', mod$model_file), fixed = TRUE))) })