context("binomial") # Simulations take a bit of time to set up skip_on_cran() # Simulate two time series of Binomial trials trials <- sample(c(20:25), 50, replace = TRUE) x <- rnorm(50) detprob1 <- plogis(-0.5 + 0.9*x) detprob2 <- plogis(-0.1 -0.7*x) dat <- rbind(data.frame(y = rbinom(n = 50, size = trials, prob = detprob1), time = 1:50, series = 'series1', x = x, ntrials = trials), data.frame(y = rbinom(n = 50, size = trials, prob = detprob2), time = 1:50, series = 'series2', x = x, ntrials = trials)) %>% dplyr::mutate(series = as.factor(series)) %>% dplyr::arrange(time, series) # Throw in some NAs dat$y[c(1,5,9)] <- NA # Training and testing splits dat_train <- dat %>% dplyr::filter(time <= 40) dat_test <- dat %>% dplyr::filter(time > 40) test_that("cbind() syntax required for binomial()", { # Initial warning should be issued when calling binomial or beta-binomial expect_warning(mvgam(cbind(y, ntrials) ~ s(series, bs = 're') + gp(x, by = series, c = 5/4, k = 5), family = binomial(), data = dat_train, run_model = FALSE)) expect_error(mvgam(y ~ series + s(x, by = series), family = binomial(), data = dat_train, run_model = FALSE), 'Binomial family requires cbind() syntax in the formula left-hand side', fixed = TRUE) # Should work if correctly specified mod <- mvgam(cbind(y, ntrials) ~ s(series, bs = 're') + gp(x, by = series, c = 5/4, k = 5), family = binomial(), data = dat_train, run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(any(grepl('flat_ys ~ binomial(', mod$model_file, fixed = TRUE))) # Also with a trend_formula mod <- mvgam(cbind(y, ntrials) ~ series, trend_formula = ~ s(x, by = trend), family = binomial(), trend_model = AR(), data = dat_train, run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(any(grepl('flat_ys ~ binomial(', mod$model_file, fixed = TRUE))) # Also with no predictors mod <- mvgam(cbind(y, ntrials) ~ 1, family = binomial(), trend_model = AR(), data = dat_train, run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(any(grepl('flat_ys ~ binomial(', mod$model_file, fixed = TRUE))) }) test_that("binomial() post-processing works", { mod <- SW(mvgam(cbind(y, ntrials) ~ series, trend_formula = ~ s(x, by = trend), family = binomial(), trend_model = AR(), data = dat_train, burnin = 500, samples = 200, chains = 2)) expect_no_error(capture_output(summary(mod))) expect_no_error(capture_output(code(mod))) expect_no_error(capture_output(print(mod))) preds <- predict(mod, summary = FALSE, type = 'response') expect_true(NCOL(preds) == NROW(dat_train)) expect_true(all(preds >= 0L)) preds <- predict(mod, newdata = dat_test, summary = FALSE) expect_true(NCOL(preds) == NROW(dat_test)) expect_no_error(ppc(mod)) expect_no_error(ppc(mod, type = 'density')) expect_no_error(ppc(mod, type = 'mean')) expect_no_error(ppc(mod, type = 'pit')) expect_no_error(ppc(mod, type = 'cdf')) expect_no_error(ppc(mod, type = 'rootogram')) expect_no_error(plot(mod, type = 'residuals')) expect_no_error(plot_mvgam_series(object = mod)) expect_no_error(plot_mvgam_series(object = mod, series = 'all')) expect_no_error(plot(mod, type = 'forecast')) expect_no_error(plot(mod, type = 'forecast', newdata = dat_test)) expect_no_error(plot(mod, type = 'trend')) expect_no_error(plot(mod, type = 'trend', realisations = TRUE)) expect_no_error(plot(mod, type = 'trend', newdata = dat_test)) expect_true(inherits(hindcast(mod), 'mvgam_forecast')) fc <- forecast(mod, newdata = dat_test) expect_true(inherits(fc, 'mvgam_forecast')) expect_no_error(plot(fc)) expect_no_error(plot(fc, realisations = TRUE)) expect_no_error(SW(plot(mod, type = 'smooths', trend_effects = TRUE))) expect_no_error(plot(mod, type = 'smooths', realisations = TRUE, trend_effects = TRUE)) expect_no_error(plot(mod, type = 'smooths', residuals = TRUE, trend_effects = TRUE)) expect_no_error(plot(mod, type = 're', trend_effects = TRUE)) expect_no_error(plot(mod, type = 'pterms')) expect_true(inherits(SM(conditional_effects(mod)), 'mvgam_conditional_effects')) expect_true(inherits(SM(conditional_effects(mod, type = 'link')), 'mvgam_conditional_effects')) options(mc.cores = 1) expect_loo(SW(loo(mod))) dat_test2 <- dat_test dat_test2$ntrials <- NULL expect_error(plot(mod, type = 'trend', newdata = dat_test2), 'Variable ntrials not found in newdata') expect_error(forecast(mod, newdata = dat_test2), 'Variable ntrials not found in newdata') mod <- SW(mvgam(cbind(y, ntrials) ~ series, trend_formula = ~ s(x, by = trend), family = binomial(), trend_model = AR(), data = dat_train, newdata = dat_test, burnin = 200, samples = 200, chains = 2)) fc <- forecast(mod) expect_true(inherits(fc, 'mvgam_forecast')) expect_no_error(plot_mvgam_uncertainty(mod)) }) # All tests should apply to beta_binomial as well test_that("cbind() syntax required for beta_binomial()", { expect_error(SW(mvgam(y ~ series + s(x, by = series), family = beta_binomial(), data = dat_train, run_model = FALSE)), 'Binomial family requires cbind() syntax in the formula left-hand side', fixed = TRUE) # Should work if correctly specified mod <- mvgam(cbind(y, ntrials) ~ s(series, bs = 're') + gp(x, by = series, c = 5/4, k = 5), family = beta_binomial(), data = dat_train, run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(any(grepl('flat_ys ~ beta_binomial(', mod$model_file, fixed = TRUE))) # Also with a trend_formula mod <- mvgam(cbind(y, ntrials) ~ series, trend_formula = ~ s(x, by = trend), family = beta_binomial(), trend_model = AR(), data = dat_train, run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(any(grepl('flat_ys ~ beta_binomial(', mod$model_file, fixed = TRUE))) # Also with no predictors and with a prior on phi mod <- mvgam(cbind(y, ntrials) ~ 0, family = beta_binomial(), priors = prior(normal(0, 3), class = phi), trend_model = AR(), data = dat_train, run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(any(grepl('beta_binomial(', mod$model_file, fixed = TRUE))) expect_true(any(grepl("b[1] = 0;", mod$model_file, fixed = TRUE))) expect_true(any(grepl("phi ~ normal(0, 3);", mod$model_file, fixed = TRUE))) }) test_that("trials variable must be in data for binomial()", { expect_error(mvgam(cbind(y, mytrials) ~ series + s(x, by = series), family = binomial(), data = dat_train, run_model = FALSE), 'variable mytrials not found in data', fixed = TRUE) }) # Simulate two time series of Bernoulli draws x <- rnorm(50) detprob1 <- plogis(-0.5 + 0.9*x) detprob2 <- plogis(-0.1 -0.7*x) dat <- rbind(data.frame(y = rbinom(n = 50, size = 1, prob = detprob1), time = 1:50, series = 'series1', x = x), data.frame(y = rbinom(n = 50, size = 1, prob = detprob2), time = 1:50, series = 'series2', x = x)) %>% dplyr::mutate(series = as.factor(series)) %>% dplyr::arrange(time, series) # Throw in some NAs dat$y[c(1,5,9)] <- NA # Training and testing splits dat_train <- dat %>% dplyr::filter(time <= 40) dat_test <- dat %>% dplyr::filter(time > 40) test_that("bernoulli() behaves appropriately", { expect_error(mvgam(y ~ series + s(x, by = series), family = bernoulli(), data = gaus_data$data_train, run_model = FALSE), 'y values must be 0 <= y <= 1', fixed = TRUE) mod <- mvgam(y ~ s(series, bs = 're') + gp(x, by = series, c = 5/4, k = 5), family = bernoulli(), data = dat_train, run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(any(grepl('flat_ys ~ bernoulli_logit_glm(', mod$model_file, fixed = TRUE))) # Also with a trend_formula mod <- mvgam(y ~ series, trend_formula = ~ gp(x, by = trend, c = 5/4), trend_model = AR(), family = bernoulli(), data = dat_train, run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(any(grepl('flat_ys ~ bernoulli_logit_glm(', mod$model_file, fixed = TRUE))) }) test_that("bernoulli() post-processing works", { mod <- SW(mvgam(y ~ s(series, bs = 're') + gp(x, by = series, c = 5/4, k = 5), trend_model = AR(), priors = prior(normal(0, 0.1), class = ar1), family = bernoulli(), data = dat_train, burnin = 200, samples = 200, chains = 2)) expect_no_error(capture_output(summary(mod))) expect_no_error(capture_output(print(mod))) preds <- predict(mod, summary = FALSE, type = 'response') expect_true(NCOL(preds) == NROW(dat_train)) expect_true(all(preds >= 0L)) preds <- predict(mod, newdata = dat_test, summary = FALSE) expect_true(NCOL(preds) == NROW(dat_test)) expect_no_error(ppc(mod)) expect_no_error(ppc(mod, type = 'density')) expect_no_error(ppc(mod, type = 'mean')) expect_no_error(ppc(mod, type = 'pit')) expect_no_error(ppc(mod, type = 'cdf')) expect_no_error(plot(mod, type = 'residuals')) expect_no_error(plot_mvgam_series(object = mod, lines = FALSE)) expect_no_error(plot_mvgam_series(object = mod, series = 'all')) expect_no_error(plot(mod, type = 'forecast')) expect_no_error(plot(mod, type = 'forecast', newdata = dat_test)) expect_no_error(plot(mod, type = 'trend')) expect_no_error(plot(mod, type = 'trend', newdata = dat_test)) expect_true(inherits(hindcast(mod), 'mvgam_forecast')) expect_true(inherits(hindcast(mod, type = 'expected'), 'mvgam_forecast')) expect_no_error(plot(mod, type = 're')) expect_no_error(plot(mod, type = 'smooths')) expect_no_error(plot(mod, type = 'smooths', realisations = TRUE)) expect_no_error(plot(mod, type = 'smooths', residuals = TRUE)) expect_true(inherits(SM(conditional_effects(mod)), 'mvgam_conditional_effects')) expect_true(inherits(SM(conditional_effects(mod, type = 'link')), 'mvgam_conditional_effects')) options(mc.cores = 1) expect_loo(SW(loo(mod))) })