context("RW,AR,VAR,CAR") skip_on_cran() test_that("ma and cor options should work for trends other than VAR", { test <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, trend_model = AR(p = 1, ma = TRUE), data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(inherits(test, 'mvgam_prefit')) expect_true(any(grepl('vector[n_series]theta;', gsub(' ', '', test$model_file), fixed = TRUE))) expect_true(attr(test$model_data, 'trend_model') == 'AR1') # Drift terms allowed test <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, trend_model = AR(p = 1, ma = TRUE), drift = TRUE, data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(inherits(test, 'mvgam_prefit')) expect_true(any(grepl('vector[n_series]theta;', gsub(' ', '', test$model_file), fixed = TRUE))) expect_true(attr(test$model_data, 'trend_model') == 'AR1') expect_true(any(grepl('drift~std_normal();', gsub(' ', '', test$model_file), fixed = TRUE))) expect_true(any(grepl('vector[n_series]drift;', gsub(' ', '', test$model_file), fixed = TRUE))) expect_true(test$drift) test <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, trend_model = AR(p = 1, cor = TRUE), data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(inherits(test, 'mvgam_prefit')) expect_true(any(grepl('error[i]~multi_normal_cholesky(trend_zeros,L_Sigma);', gsub(' ', '', test$model_file), fixed = TRUE))) expect_true(attr(test$model_data, 'trend_model') == 'AR1') test <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, trend_model = RW(ma = TRUE), data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(inherits(test, 'mvgam_prefit')) expect_true(any(grepl('vector[n_series]theta;', gsub(' ', '', test$model_file), fixed = TRUE))) expect_true(attr(test$model_data, 'trend_model') == 'RW') test <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, trend_model = RW(cor = TRUE), data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(inherits(test, 'mvgam_prefit')) expect_true(any(grepl('error[i]~multi_normal_cholesky(trend_zeros,L_Sigma);', gsub(' ', '', test$model_file), fixed = TRUE))) expect_true(attr(test$model_data, 'trend_model') == 'RW') }) test_that("VARMAs are set up correctly", { var <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, trend_model = VAR(), data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(inherits(var, 'mvgam_prefit')) var <- mvgam(y ~ s(series, bs = 're') + gp(time, c = 5/4, k = 20) - 1, trend_model = VAR(), data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(inherits(var, 'mvgam_prefit')) varma <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, trend_model = 'VARMA', data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(any(grepl('// unconstrained ma inverse partial autocorrelations', varma$model_file, fixed = TRUE))) varma <- mvgam(y ~ s(series, bs = 're'), trend_formula = ~ gp(time, by = trend, c = 5/4), trend_model = VAR(ma = TRUE), data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(any(grepl('// unconstrained ma inverse partial autocorrelations', varma$model_file, fixed = TRUE))) expect_error(mvgam(y ~ s(series, bs = 're'), trend_formula = ~ s(season, bs = 'cc'), trend_model = VAR(ma = TRUE), drift = TRUE, data = gaus_data$data_train, family = gaussian(), run_model = FALSE), 'drift terms not allowed for VAR or GP models') }) # Replicate CAR1 example # Function to simulate CAR1 data with seasonality sim_corcar1 = function(n = 120, phi = 0.5, sigma = 1, sigma_obs = 0.75){ # Sample irregularly spaced time intervals time_dis <- c(0, runif(n - 1, -0.1, 1)) time_dis[time_dis < 0] <- 0; time_dis <- time_dis * 5 # Set up the latent dynamic process x <- vector(length = n); x[1] <- -0.3 for(i in 2:n){ # zero-distances will cause problems in sampling, so mvgam uses a # minimum threshold; this simulation function emulates that process if(time_dis[i] == 0){ x[i] <- rnorm(1, mean = (phi ^ 1e-12) * x[i - 1], sd = sigma) } else { x[i] <- rnorm(1, mean = (phi ^ time_dis[i]) * x[i - 1], sd = sigma) } } # Add 12-month seasonality cov1 <- sin(2 * pi * (1 : n) / 12); cov2 <- cos(2 * pi * (1 : n) / 12) beta1 <- runif(1, 0.3, 0.7); beta2 <- runif(1, 0.2, 0.5) seasonality <- beta1 * cov1 + beta2 * cov2 # Take Gaussian observations with error and return data.frame(y = rnorm(n, mean = x + seasonality, sd = sigma), season = rep(1:12, 20)[1:n], time = cumsum(time_dis)) } # Sample two time series dat <- rbind(dplyr::bind_cols(sim_corcar1(phi = 0.65, sigma_obs = 0.55), data.frame(series = 'series1')), dplyr::bind_cols(sim_corcar1(phi = 0.8, sigma_obs = 0.35), data.frame(series = 'series2'))) %>% dplyr::mutate(series = as.factor(series)) test_that("CAR1 sets up correctly", { # mvgam with CAR(1) trends and series-level seasonal smooths mod <- mvgam(formula = y ~ s(season, bs = 'cc', k = 5, by = series), trend_model = CAR(), data = dat, family = gaussian(), run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(exists('time_dis', mod$model_data)) expect_true(exists('index..time..index', mod$obs_data)) expect_true(attr(mod$model_data, 'trend_model') == 'CAR1') expect_true(any(grepl('vector[n_series]ar1;', gsub(' ', '', mod$model_file), fixed = TRUE))) # Drift terms allowed mod <- mvgam(formula = y ~ s(season, bs = 'cc', k = 5, by = series), trend_model = CAR(), drift = TRUE, data = dat, family = gaussian(), run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(exists('time_dis', mod$model_data)) expect_true(exists('index..time..index', mod$obs_data)) expect_true(attr(mod$model_data, 'trend_model') == 'CAR1') expect_true(any(grepl('drift~std_normal();', gsub(' ', '', mod$model_file), fixed = TRUE))) expect_true(any(grepl('vector[n_series]drift;', gsub(' ', '', mod$model_file), fixed = TRUE))) expect_true(mod$drift) # Will work for regularly-spaced data as well mod <- mvgam(formula = y ~ s(season, bs = 'cc', k = 5, by = series), trend_model = CAR(), data = gaus_data$data_train, family = gaussian(), run_model = FALSE) expect_true(inherits(mod, 'mvgam_prefit')) expect_true(exists('time_dis', mod$model_data)) expect_true(all.equal(mean(mod$model_data$time_dis[2:NROW(mod$model_data$time_dis),]), max(mod$model_data$time_dis[2:NROW(mod$model_data$time_dis),]), min(mod$model_data$time_dis[2:NROW(mod$model_data$time_dis),]), 1L)) expect_true(exists('index..time..index', mod$obs_data)) expect_true(attr(mod$model_data, 'trend_model') == 'CAR1') })