model { mu <- X %*% b ## expected response for (i in 1:n) { y[i] ~ dnorm(mu[i],tau) } ## response scale <- 1/tau ## convert tau to standard GLM scale tau ~ dgamma(.05,.005) ## precision parameter prior ## Parametric effect priors CHECK tau=1/6^2 is appropriate! for (i in 1:1) { b[i] ~ dnorm(0,0.028) } ## prior for s(season)... K1 <- S1[1:4,1:4] * lambda[1] + S1[1:4,5:8] * lambda[2] b[2:5] ~ dmnorm(zero[2:5],K1) ## smoothing parameter priors CHECK... for (i in 1:2) { lambda[i] ~ dgamma(.05,.005) rho[i] <- log(lambda[i]) } }