context("test-anova-block.R") test_that("manyglm block anova ", { # from the example(anova.manyglm) ### Load the Tasmania data set rep.seed <- TRUE data(Tasmania) nBoot <- 199 ## Visualise the effect of treatment on copepod abundance tasm.cop <- mvabund(Tasmania$copepods) treatment <- Tasmania$treatment block <- Tasmania$block ## Fitting predictive models using a negative binomial model for counts: tasm.cop.nb <- manyglm(tasm.cop ~ block*treatment, family="negative.binomial") # test just using the normal distribution # note this would be inappropriate to do normally but we are trying to test block resampling tasm.cop <- manylm(tasm.cop ~ block*treatment) ## Testing hypotheses about the treatment effect and treatment-by-block interactions, ## using a Wald statistic and 199 resamples (better to ramp up to 999 for a paper): aglm <- anova(tasm.cop.nb, nBoot=nBoot, test="LR", show.time='none', block = block, rep.seed=T) alm <- anova(tasm.cop, nBoot=nBoot, test="LR", block = block, rep.seed=T) expect_equal_to_reference(cbind(aglm$table[,3],alm$table[,3]), 'block_anova_resampling.rds') sglm <- summary(tasm.cop.nb, nBoot = nBoot, block = block, rep.seed = T) slm <- summary(tasm.cop, nBoot = nBoot, block = block, rep.seed = T) expect_equal_to_reference(cbind(coef(slm)[,1], coef(sglm)[,1]), 'block_summary_resampling.rds') if(interactive()) { cat('print summaries: sglm \n') print(sglm) cat('print summaries: slm\n') print(slm) cat('print anova: aglm\n') print(aglm) cat('print anova: alm\n') print(alm) } })