library(multinma) library(dplyr) # Expose internal nma.fit() nma.fit <- multinma:::nma.fit test_that("nma() wants a nma_data object", { m <- "Expecting an `nma_data` object" expect_error(nma(network = 1), m) expect_error(nma(network = list()), m) expect_error(nma(network = NULL), m) }) smknet <- set_agd_arm(smoking, studyn, trtc, r = r, n = n, trt_ref = "No intervention") test_that("nma() consistency argument must be one listed", { m <- "`consistency` must be" expect_error(nma(smknet, consistency = "con"), m) expect_error(nma(smknet, consistency = "a"), m) expect_error(nma(smknet, consistency = 1), m) expect_error(nma(smknet, consistency = NA), m) expect_error(nma(smknet, consistency = NULL), m) # Not needed - rlang::arg_match always returns a single string # expect_error(nma(smknet, consistency = c("consistency", "ume")), m) }) test_that("nma() trt_effects argument must be one listed", { m <- "`trt_effects` must be" expect_error(nma(smknet, trt_effects = "fix"), m) expect_error(nma(smknet, trt_effects = "a"), m) expect_error(nma(smknet, trt_effects = 1), m) expect_error(nma(smknet, trt_effects = NA), m) expect_error(nma(smknet, trt_effects = NULL), m) # Not needed - rlang::arg_match always returns a single string # expect_error(nma(smknet, trt_effects = c("fixed", "random")), m) }) test_that("nma() likelihood must be valid", { m <- "`likelihood` should be" expect_error(nma(smknet, likelihood = 1), m) expect_error(nma(smknet, likelihood = "a"), m) expect_error(nma(smknet, likelihood = "norm"), m) expect_error(nma(smknet, likelihood = c("normal", "bernoulli")), m) }) test_that("nma() link must be valid", { m <- "`link` should be" expect_error(nma(smknet, link = 1), m) expect_error(nma(smknet, link = "a"), m) expect_error(nma(smknet, link = "lo"), m) expect_error(nma(smknet, link = c("log", "identity")), m) }) # Make dummy covariate data for smoking network ns_agd <- max(smoking$studyn) smkdummy <- smoking %>% group_by(studyn) %>% mutate(x1_mean = rnorm(1), x1_sd = runif(1, 0.5, 2), x2 = runif(1), x3_mean = rnorm(1), x3_sd = runif(1, 0.5, 2)) ns_ipd <- 2 x1_x2_cor <- 0.4 n_i <- 200 cormat <- matrix(x1_x2_cor, nrow = 3, ncol = 3) diag(cormat) <- 1 cop <- copula::normalCopula(copula::P2p(cormat), dim = 3, dispstr = "un") u <- matrix(runif(n_i * 3 * ns_ipd), ncol = 3) u_cor <- as.data.frame(copula::cCopula(u, cop, inverse = TRUE)) ipddummy <- tibble(studyn = rep(ns_agd, n_i * ns_ipd) + rep(1:ns_ipd, each = n_i), trtn = sample(1:2, n_i * ns_ipd, TRUE)) %>% mutate(x1 = qnorm(u_cor[,1]), x2 = qbinom(u_cor[,2], 1, 0.6), x3 = qnorm(u_cor[,3], 1, 0.5), r = rbinom(n(), 1, 0.2)) smknet_agd <- set_agd_arm(smkdummy, studyn, trtn, r = r, n = n) smknet_ipd <- set_ipd(ipddummy, studyn, trtn, r = r) smknet_2 <- combine_network(smknet_agd, smknet_ipd) %>% add_integration(x1 = distr(qnorm, x1_mean, x1_sd), x2 = distr(qbinom, 1, x2), x3 = distr(qnorm, x3_mean, x3_sd)) test_that("nma() regression formula is valid", { expect_error(nma(smknet_2, regression = y ~ x, center = FALSE), "one-sided formula") expect_error(nma(smknet_2, regression = ~ a, center = FALSE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), 'Regression variable "a" not found') expect_error(nma(smknet_2, regression = ~ a*.trt, center = FALSE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), 'Regression variable "a" not found') expect_error(nma(smknet_2, regression = ~ a^2*.trt, center = FALSE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), 'Regression variable "a" not found') expect_error(nma(smknet_2, regression = ~ (a + b)*.trt, center = FALSE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), 'Regression variables "a" and "b" not found') expect_error(nma(smknet_2, regression = y ~ x, center = TRUE), "one-sided formula") expect_error(nma(smknet_2, regression = ~ a, center = TRUE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), 'Regression variable "a" not found') expect_error(nma(smknet_2, regression = ~ a*.trt, center = TRUE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), 'Regression variable "a" not found') expect_error(nma(smknet_2, regression = ~ a^2*.trt, center = TRUE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), 'Regression variable "a" not found') expect_error(nma(smknet_2, regression = ~ (a + b)*.trt, center = TRUE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), 'Regression variables "a" and "b" not found') }) make_na <- function(x, n) { x[sample.int(length(x), n)] <- NA return(x) } smknet_agd_missx <- smkdummy %>% mutate(x1_mean = make_na(x1_mean, 2), x1 = x1_mean) %>% set_agd_arm(studyn, trtn, r = r, n = n) smknet_ipd_missx <- ipddummy %>% mutate(x1 = make_na(x1, 10)) %>% set_ipd(studyn, trtn, r = r) test_that("nma() error if missing values in outcomes or predictors", { m <- "missing or infinite values" expect_error(nma(smknet_agd_missx, regression = ~x1_mean, center = FALSE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), m) expect_error(nma(smknet_agd_missx, regression = ~x1_mean, center = TRUE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), m) expect_error(nma(smknet_ipd_missx, regression = ~x1, center = FALSE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), m) expect_error(nma(smknet_ipd_missx, regression = ~x1, center = TRUE, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5)), m) expect_error(suppressWarnings( # Suppress warning about naive plug-in model nma(combine_network(smknet_agd_missx, smknet_ipd_missx), regression = ~x1, center = FALSE)), m) expect_error(suppressWarnings( # Suppress warning about naive plug-in model nma(combine_network(smknet_agd_missx, smknet_ipd_missx), regression = ~x1, center = TRUE)), m) }) smknet_3l <- combine_network( set_agd_arm(smkdummy %>% mutate(extra = 0.5, tclass = if_else(trtn == 1, 0, 1)), studyn, trtn, r = r, n = n, trt_class = tclass), set_ipd(ipddummy %>% mutate(extra = TRUE, tclass = if_else(trtn == 1, 0, 1)), studyn, trtn, r = r, trt_class = tclass), trt_ref = 1) %>% add_integration(x1 = distr(qnorm, x1_mean, x1_sd), x2 = distr(qbinom, 1, x2), x3 = distr(qnorm, x3_mean, x3_sd)) smknet_3c <- combine_network( set_agd_arm(smkdummy %>% mutate(extra = 0.5, tclass = if_else(trtn == 1, 0, 1)), studyn, trtn, r = r, n = n, trt_class = tclass), set_ipd(ipddummy %>% mutate(extra = "a", tclass = if_else(trtn == 1, 0, 1)), studyn, trtn, r = r, trt_class = tclass), trt_ref = 1) %>% add_integration(x1 = distr(qnorm, x1_mean, x1_sd), x2 = distr(qbinom, 1, x2), x3 = distr(qnorm, x3_mean, x3_sd)) test_that("nma() silently drops unnecessary columns", { expect_error(nma(smknet_3l, regression = ~(x1 + x2 + x3):.trt, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5), test_grad = TRUE), NA) expect_error(nma(smknet_3c, regression = ~(x1 + x2 + x3):.trt, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5), test_grad = TRUE), NA) }) test_that("nma.fit() error if only one of x or y provided", { x <- matrix(1, nrow = 3, ncol = 3) colnames(x) <- c("a", "b", "c") y <- tibble(.y = 1:3) m <- "both be present or both NULL" expect_error(nma.fit(ipd_x = x), m) expect_error(nma.fit(ipd_y = y), m) expect_error(nma.fit(agd_arm_x = x), m) expect_error(nma.fit(agd_arm_y = y), m) expect_error(nma.fit(agd_contrast_x = x), "all be present or all NULL") expect_error(nma.fit(agd_contrast_y = y), "all be present or all NULL") expect_error(nma.fit(agd_contrast_Sigma = list()), "all be present or all NULL") }) test_that("nma.fit() error if x and y dimension mismatch", { x <- matrix(1, nrow = 3, ncol = 3) colnames(x) <- c("a", "b", "c") y <- tibble(.y = 1:2) m <- "Number of rows.+do not match" expect_error(nma.fit(ipd_x = x, ipd_y = y), m) expect_error(nma.fit(agd_arm_x = x, agd_arm_y = y, n_int = 1), m) expect_error(nma.fit(agd_contrast_x = x, agd_contrast_y = y, agd_contrast_Sigma = list(), n_int = 1), m) }) test_that("nma.fit() error if x column names different", { x1 <- x2 <- matrix(1, nrow = 3, ncol = 3) colnames(x1) <- c(".study1", ".trt1", "c") colnames(x2) <- c(".study1", ".trt1", "D") x3 <- x1[, 1:2] y <- tibble(.y = 1:3, .se = 1:3) Sigma <- list(matrix(1, 3, 3)) m <- "Non-matching columns" expect_error(nma.fit(ipd_x = x1, ipd_y = y, agd_arm_x = x2, agd_arm_y = y, n_int = 1), m) expect_error(nma.fit(ipd_x = x1, ipd_y = y, agd_contrast_x = x2, agd_contrast_y = y, agd_contrast_Sigma = Sigma, n_int = 1), m) expect_error(nma.fit(agd_arm_x = x1, agd_arm_y = y, agd_contrast_x = x2, agd_contrast_y = y, agd_contrast_Sigma = Sigma, n_int = 1), m) expect_error(nma.fit(ipd_x = x1, ipd_y = y, agd_arm_x = x3, agd_arm_y = y, n_int = 1), m) expect_error(nma.fit(ipd_x = x1, ipd_y = y, agd_contrast_x = x3, agd_contrast_y = y, agd_contrast_Sigma = Sigma, n_int = 1), m) expect_error(nma.fit(agd_arm_x = x2, agd_arm_y = y, agd_contrast_x = x3, agd_contrast_y = y, agd_contrast_Sigma = Sigma, n_int = 1), m) }) test_that("nma.fit() error if agd_contrast_Sigma is not right dimensions", { x1 <- matrix(1, nrow = 3, ncol = 3) colnames(x1) <- c(".study1", ".trt1", "x") y <- tibble(.y = 1:3, .se = 1:3) Sigma1 <- list(matrix(1, 3, 3), matrix(1, 1, 1)) Sigma2 <- list(matrix(1, 4, 4)) expect_error(nma.fit(agd_contrast_x = x1, agd_contrast_y = y, agd_contrast_Sigma = Sigma1, likelihood = "normal", link = "identity", prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5), prior_het = normal(0, 1), n_int = 1), "Dimensions of `agd_contrast_Sigma`.+do not match") expect_error(nma.fit(agd_contrast_x = x1, agd_contrast_y = y, agd_contrast_Sigma = Sigma2, likelihood = "normal", link = "identity", prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_reg = normal(0, 5), prior_het = normal(0, 1), n_int = 1), "Dimensions of `agd_contrast_Sigma`.+do not match") }) single_study_a <- tibble(study = "A", trt = c("a", "b"), r = 500, n = 1000) net_ss_a <- set_agd_arm(single_study_a, study, trt, r = r, n = n) single_study_c <- tibble(study = "A", trt = c("a", "b"), y = c(NA, 0), se = c(NA, sqrt(4/500))) net_ss_c <- set_agd_contrast(single_study_c, study, trt, y = y, se = se) single_study_i <- tibble(study = "A", trt = rep(c("a", "b"), each = 100), y = c(rnorm(100, 0, 0.1), rnorm(100, 1, 0.1))) net_ss_i <- set_ipd(single_study_i, study, trt, y = y) test_that("nma() doesn't fail with a single study", { skip_on_cran() fit_ss_a <- nma(net_ss_a, prior_intercept = normal(0, 10), prior_trt = normal(0, 10)) expect_s3_class(fit_ss_a, "stan_nma") d_ss_a <- relative_effects(fit_ss_a) expect_equivalent(d_ss_a$summary$mean, 0, tol = 0.01) expect_equivalent(d_ss_a$summary$sd, sqrt(4/500), tol = 0.01) fit_ss_c <- nma(net_ss_c, prior_intercept = normal(0, 10), prior_trt = normal(0, 10)) expect_s3_class(fit_ss_c, "stan_nma") d_ss_c <- relative_effects(fit_ss_c) expect_equivalent(d_ss_c$summary$mean, 0, tol = 0.01) expect_equivalent(d_ss_c$summary$sd, sqrt(4/500), tol = 0.01) fit_ss_i <- nma(net_ss_i, prior_intercept = normal(0, 10), prior_trt = normal(0, 10), prior_aux = half_normal(2)) expect_s3_class(fit_ss_i, "stan_nma") d_ss_i <- relative_effects(fit_ss_i) expect_equivalent(d_ss_i$summary$mean, 1, tol = 0.1) expect_equivalent(d_ss_i$summary$sd, sqrt(0.1^2 + 0.1^2)/sqrt(200), tol = 0.01) }) test_that("nma() gives warnings for default priors", { m <- "Prior distributions were left at default values:" # Use test_grad = TRUE to avoid running any samples, just check logic works expect_warning(nma(smknet, test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_trt.+")) expect_warning(nma(smknet, prior_intercept = normal(0, 1), test_grad = TRUE), paste0(m, ".+prior_trt.+")) expect_warning(nma(smknet, prior_trt = normal(0, 1), test_grad = TRUE), paste0(m, ".+prior_intercept.+")) expect_warning(nma(smknet, trt_effects = "random", test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_trt.+", "prior_het.+")) expect_warning(nma(smknet, trt_effects = "random", prior_intercept = normal(0, 1), test_grad = TRUE), paste0(m, ".+prior_trt.+", "prior_het.+")) expect_warning(nma(smknet, trt_effects = "random", prior_trt = normal(0, 1), test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_het.+")) expect_warning(nma(smknet, trt_effects = "random", prior_het = half_normal(1), test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_trt.+")) smknet_yi <- set_ipd(smoking, studyn, trtc, y = r) expect_warning(nma(smknet_yi, test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_trt.+", "prior_aux.+")) expect_warning(nma(smknet_yi, prior_intercept = normal(0, 1), test_grad = TRUE), paste0(m, ".+prior_trt.+", "prior_aux.+")) expect_warning(nma(smknet_yi, prior_trt = normal(0, 1), test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_aux.+")) expect_warning(nma(smknet_yi, prior_aux = half_normal(1), test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_trt.+")) expect_warning(nma(smknet_yi, trt_effects = "random", test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_trt.+", "prior_het.+", "prior_aux.+")) expect_warning(nma(smknet_yi, trt_effects = "random", prior_intercept = normal(0, 1), test_grad = TRUE), paste0(m, ".+prior_trt.+", "prior_het.+", "prior_aux.+")) expect_warning(nma(smknet_yi, trt_effects = "random", prior_trt = normal(0, 1), test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_het.+", "prior_aux.+")) expect_warning(nma(smknet_yi, trt_effects = "random", prior_het = half_normal(1), test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_trt.+", "prior_aux.+")) expect_warning(nma(smknet_yi, trt_effects = "random", prior_aux = half_normal(1), test_grad = TRUE), paste0(m, ".+prior_intercept.+", "prior_trt.+", "prior_het.+")) }) test_that("nma() error with incompatible priors", { m <- "Invalid `prior_.+`\\. Suitable distributions are" expect_error(nma(smknet, prior_intercept = half_normal(1), prior_trt = normal(0, 1)), m) expect_error(nma(smknet, prior_intercept = normal(0, 1), prior_trt = half_normal(1)), m) }) test_that("nma() prior checks work", { expect_error(nma(smknet, prior_intercept = "bad"), "`prior_intercept` must be a prior distribution") expect_error(nma(smknet, prior_intercept = list(normal(0, 1))), "`prior_intercept` must be a prior distribution") ndmm_net <- set_ipd(ndmm_ipd, studyf, trtf, Surv = Surv(eventtime, status)) expect_error(nma(ndmm_net, likelihood = "gengamma", prior_intercept = normal(0, 100), prior_trt = normal(0, 100), prior_aux = letters), "`prior_aux` must be a named list of prior distributions") expect_error(nma(ndmm_net, likelihood = "gengamma", prior_intercept = normal(0, 100), prior_trt = normal(0, 100), prior_aux = list(a = normal(0, 1))), "Missing named elements with priors for sigma and k") expect_error(nma(ndmm_net, likelihood = "gengamma", prior_intercept = normal(0, 100), prior_trt = normal(0, 100), prior_aux = list(k = normal(0, 1))), "Missing named elements with priors for sigma") }) test_that("rstan R-hat and ESS warnings are captured correctly", { # Need to capture these for numerical integration checks, but fragile since warning text may change local_edition(3) expect_warning( expect_warning( expect_warning( nma(smknet, prior_intercept = normal(0, 100), prior_trt = normal(0, 100), iter = 100, seed = 1234, init = 0), "The largest R-hat is"), "Bulk Effective Sample(s?) Size \\(ESS\\) is too low"), "Tail Effective Sample(s?) Size \\(ESS\\) is too low") })