# tests/testthat/test-dfMaker.R library(testthat) library(multimolang) # Ensure the package name is correct # General test for dfMaker test_that("dfMaker processes a folder and returns a data frame", { # Use the package path input_folder <- system.file("extdata", "ex_videos", "o1", package = "multimolang") # Run dfMaker result <- dfMaker(input.folder = input_folder, no_save = TRUE) # Debugging: Display information about the result message("Is it a data.frame?: ", is.data.frame(result)) if (is.data.frame(result)) { message("Number of rows: ", nrow(result)) message("Columns: ", paste(colnames(result), collapse = ", ")) } # Check that the result is a data frame expect_true(is.data.frame(result), "The result is not a data.frame") # Check that it is not empty expect_gt(nrow(result), 0, "The result is empty") # Check that it contains the expected columns expected_columns <- c("x", "y", "c", "nx", "ny", "type_points", "people_id", "points", "id", "frame") expect_true(all(expected_columns %in% colnames(result)), "Missing expected columns") }) # Test for fast_scaling = TRUE (pose_keypoints only) test_that("Origin and scaling points are correctly transformed with fast_scaling = TRUE for pose_keypoints", { # Define the input folder with example data using system.file() input_folder <- system.file("extdata", "ex_videos", "o1", package = "multimolang") # Verify that the input folder exists expect_true(dir.exists(input_folder), "The input folder does not exist") # Define the keypoint types and their transformation coordinates keypoint_types <- list( "1" = c(1, 1, 5, 5) # pose_keypoints ) # Iterate over each keypoint type and verify transformations for (type_code in names(keypoint_types)) { transformation_coords <- keypoint_types[[type_code]] verify_transformation(as.numeric(type_code), transformation_coords, input_folder, fast_scaling = TRUE) } }) # Test for fast_scaling = FALSE (including pose_keypoints) test_that("Origin and scaling points are correctly transformed with fast_scaling = FALSE for all keypoints", { # Define the input folder with example data using system.file() input_folder <- system.file("extdata", "ex_videos", "o1", package = "multimolang") # Verify that the input folder exists expect_true(dir.exists(input_folder), "The input folder does not exist") # Define the keypoint types and their transformation coordinates keypoint_types <- list( "1" = c(1, 1, 5, 5), # pose_keypoints "2" = c(2, 1, 5, 5), # face_keypoints "3" = c(3, 1, 5, 5), # hand_left_keypoints "4" = c(4, 1, 5, 5) # hand_right_keypoints ) # Iterate over each keypoint type and verify transformations for (type_code in names(keypoint_types)) { transformation_coords <- keypoint_types[[type_code]] verify_transformation(as.numeric(type_code), transformation_coords, input_folder, fast_scaling = FALSE) } }) # Test with a custom configuration file where all values are set to true test_that("dfMaker processes a folder using a custom configuration file with all true values", { # Use the package path for the input data input_folder <- system.file("extdata", "ex_videos", "o2", package = "multimolang") expect_true(dir.exists(input_folder), "The input folder does not exist") # Path to the configuration file (config_all_true.json) config_file <- system.file("extdata", "config_all_true.json", package = "multimolang") expect_true(file.exists(config_file), "The configuration file does not exist") # Run dfMaker with the configuration file result <- dfMaker(input.folder = input_folder, config.path = config_file, no_save = TRUE) # Check that the result is a data frame expect_true(is.data.frame(result), "The result is not a data.frame") # Check that it is not empty expect_gt(nrow(result), 0, "The result is empty") # Debugging: Display information about the configuration used message("Configuration file used: ", config_file) # List of columns to check required_columns <- c("exp_search", "datetime", "country_code", "network_code", "program_name", "time_range") # Iterate over each column to ensure it exists for (col in required_columns) { if (col %in% colnames(result)) { expect_true(!any(is.na(result[[col]])), paste0("The column ", col, " contains NA values")) } else { warning(paste0("The column ", col, " was not found in the result")) } } # Print column names and the first row if any required column is missing if (col %in% colnames(result)) { expect_true(!any(is.na(result[[col]])), paste0("The column ", col, " contains NA values")) } else { warning(paste0("The column ", col, " was not found in the result")) print(colnames(result)) print(result[1, ]) } })