test_that("plot method for merMod model diagnostics works", { skip_on_cran() data(aces_daily, package = "JWileymisc") m <- lme4::lmer(PosAff ~ STRESS + (1 + STRESS | UserID), data = aces_daily) md <- modelDiagnostics(m, ev.perc = .01) expect_s3_class(md, "modelDiagnostics.merMod") pm <- plot(md, plot = FALSE) expect_s3_class(pm$Residuals$ResPlot, "ggplot") expect_s3_class(pm$Residuals$ResFittedPlot, "ggplot") expect_s3_class(pm$RandomEffects[[1]], "ggplot") expect_s3_class(pm$RandomEffects[[2]], "ggplot") expect_s3_class(pm$RandomEffects[[3]], "ggplot") expect_invisible(plot(md, plot = TRUE, ask = FALSE, ncol = 3, nrow = 3)) }) test_that("plot method for merMod model diagnostics works", { skip_on_cran() data(aces_daily, package = "JWileymisc") sleep[1,1] <- NA m <- nlme::lme(extra ~ group, data = sleep, random = ~ 1 | ID, na.action = "na.omit") md <- modelDiagnostics(m, ev.perc = .1) expect_s3_class(md, "modelDiagnostics.lme") expect_true(identical(nrow(md$extremeValues), 7L)) pm <- plot(md, plot = FALSE) expect_s3_class(pm$Residuals$ResPlot, "ggplot") expect_s3_class(pm$Residuals$ResFittedPlot, "ggplot") expect_s3_class(pm$RandomEffects[[1]], "ggplot") expect_invisible(plot(md, plot = TRUE, ask = FALSE, ncol = 2, nrow = 2)) })