set.seed(1234) n <- 10000 nreps <- 10 # cont X just for testing that function runs df_om$X_cont <- plogis(df_om$X) + rnorm(nrow(df_om), mean = 0, sd = 0.1) # 0 confounders nobias_model <- glm( Y ~ X, family = binomial(link = "logit"), data = df_om_source ) y_model <- glm( Y ~ X + Ystar, family = binomial(link = "logit"), data = df_om_source ) df_observed <- data_observed( df_om, exposure = "X_cont", outcome = "Ystar", confounders = NULL ) single_run <- adjust_om( df_observed, y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3] ) ) est <- vector() for (i in 1:nreps) { bdf <- df_om[sample(seq_len(n), n, replace = TRUE), ] df_observed <- data_observed( bdf, exposure = "X", outcome = "Ystar", confounders = NULL ) results <- adjust_om( df_observed, y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3] ) ) est[i] <- results$estimate } or_true <- exp(summary(nobias_model)$coef[2, 1]) or_adjusted <- median(est) test_that("odds ratio and confidence interval output", { expect_gt(or_adjusted, or_true - 0.1) expect_lt(or_adjusted, or_true + 0.1) expect_vector( single_run$ci, ptype = double(), size = 2 ) }) # 1 confounder nobias_model <- glm(Y ~ X + C1, family = binomial(link = "logit"), data = df_om_source ) y_model <- glm(Y ~ X + Ystar + C1, family = binomial(link = "logit"), data = df_om_source ) df_observed <- data_observed( df_om, exposure = "X_cont", outcome = "Ystar", confounders = "C1" ) single_run <- adjust_om( df_observed, y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3], y_model$coef[4] ) ) est <- vector() for (i in 1:nreps) { bdf <- df_om[sample(seq_len(n), n, replace = TRUE), ] df_observed <- data_observed( bdf, exposure = "X", outcome = "Ystar", confounders = "C1" ) results <- adjust_om( df_observed, y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3], y_model$coef[4] ) ) est[i] <- results$estimate } or_true <- exp(summary(nobias_model)$coef[2, 1]) or_adjusted <- median(est) test_that("odds ratio and confidence interval output", { expect_gt(or_adjusted, or_true - 0.1) expect_lt(or_adjusted, or_true + 0.1) expect_vector( single_run$ci, ptype = double(), size = 2 ) }) # 2 confounders nobias_model <- glm(Y ~ X + C1 + C2, family = binomial(link = "logit"), data = df_om_source ) y_model <- glm(Y ~ X + Ystar + C1 + C2, family = binomial(link = "logit"), data = df_om_source ) df_observed <- data_observed( df_om, exposure = "X_cont", outcome = "Ystar", confounders = c("C1", "C2") ) single_run <- adjust_om( df_observed, y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3], y_model$coef[4], y_model$coef[5] ) ) est <- vector() for (i in 1:nreps) { bdf <- df_om[sample(seq_len(n), n, replace = TRUE), ] df_observed <- data_observed( bdf, exposure = "X", outcome = "Ystar", confounders = c("C1", "C2") ) results <- adjust_om( df_observed, y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3], y_model$coef[4], y_model$coef[5] ) ) est[i] <- results$estimate } or_true <- exp(summary(nobias_model)$coef[2, 1]) or_adjusted <- median(est) test_that("odds ratio and confidence interval output", { expect_gt(or_adjusted, or_true - 0.1) expect_lt(or_adjusted, or_true + 0.1) expect_vector( single_run$ci, ptype = double(), size = 2 ) }) # 3 confounders nobias_model <- glm(Y ~ X + C1 + C2 + C3, family = binomial(link = "logit"), data = df_om_source ) y_model <- glm(Y ~ X + Ystar + C1 + C2 + C3, family = binomial(link = "logit"), data = df_om_source ) df_observed <- data_observed( df_om, exposure = "X_cont", outcome = "Ystar", confounders = c("C1", "C2", "C3") ) single_run <- adjust_om( df_observed, y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3], y_model$coef[4], y_model$coef[5], y_model$coef[6] ) ) est <- vector() for (i in 1:nreps) { bdf <- df_om[sample(seq_len(n), n, replace = TRUE), ] df_observed <- data_observed( bdf, exposure = "X", outcome = "Ystar", confounders = c("C1", "C2", "C3") ) results <- adjust_om( df_observed, y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3], y_model$coef[4], y_model$coef[5], y_model$coef[6] ) ) est[i] <- results$estimate } or_true <- exp(summary(nobias_model)$coef[2, 1]) or_adjusted <- median(est) test_that("odds ratio and confidence interval output", { expect_gt(or_adjusted, or_true - 0.1) expect_lt(or_adjusted, or_true + 0.1) expect_vector( single_run$ci, ptype = double(), size = 2 ) }) # adjust with validation data or_val <- adjust_om( data_observed = data_observed( df_om, exposure = "X", outcome = "Ystar", confounders = c("C1", "C2", "C3") ), data_validation = data_validation( df_om_source, true_exposure = "X", true_outcome = "Y", confounders = c("C1", "C2", "C3"), misclassified_outcome = "Ystar" ) ) test_that("adjust_om, validation data", { expect_gt(or_val$estimate, or_true - 0.1) expect_lt(or_val$estimate, or_true + 0.1) })