nobias_model <- glm(Y ~ X + C1 + U, family = binomial(link = "logit"), data = df_uc_omc_source) u_model <- glm(U ~ X + Y, family = binomial(link = "logit"), data = df_uc_omc_source) y_model <- glm(Y ~ X + Ystar + C1, family = binomial(link = "logit"), data = df_uc_omc_source) single_run <- adjust_uc_omc( df_uc_omc, exposure = "X", outcome = "Ystar", confounders = "C1", u_model_coefs = c( u_model$coef[1], u_model$coef[2], u_model$coef[3] ), y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3], y_model$coef[4] ) ) n <- 100000 nreps <- 10 est <- vector() for (i in 1:nreps) { bdf <- df_uc_omc[sample(seq_len(n), n, replace = TRUE), ] results <- adjust_uc_omc( bdf, exposure = "X", outcome = "Ystar", confounders = "C1", u_model_coefs = c( u_model$coef[1], u_model$coef[2], u_model$coef[3] ), y_model_coefs = c( y_model$coef[1], y_model$coef[2], y_model$coef[3], y_model$coef[4] ) ) est[i] <- results$estimate } or_true <- exp(summary(nobias_model)$coef[2, 1]) or_adjusted <- median(est) test_that("odds ratio and confidence interval output", { expect_gt(or_adjusted, or_true - 0.15) expect_lt(or_adjusted, or_true + 0.15) expect_vector( single_run$ci, ptype = double(), size = 2 ) })