nobias_model <- glm(Y ~ X + C1 + U, family = binomial(link = "logit"), data = df_uc_emc_source) u_model <- glm(U ~ X + Y, family = binomial(link = "logit"), data = df_uc_emc_source) x_model <- glm(X ~ Xstar + Y + C1, family = binomial(link = "logit"), data = df_uc_emc_source) single_run <- adjust_uc_emc( df_uc_emc, exposure = "Xstar", outcome = "Y", confounders = "C1", u_model_coefs = c( u_model$coef[1], u_model$coef[2], u_model$coef[3] ), x_model_coefs = c( x_model$coef[1], x_model$coef[2], x_model$coef[3], x_model$coef[4] ) ) n <- 100000 nreps <- 10 est <- vector() for (i in 1:nreps) { bdf <- df_uc_emc[sample(seq_len(n), n, replace = TRUE), ] results <- adjust_uc_emc( bdf, exposure = "Xstar", outcome = "Y", confounders = "C1", u_model_coefs = c( u_model$coef[1], u_model$coef[2], u_model$coef[3] ), x_model_coefs = c( x_model$coef[1], x_model$coef[2], x_model$coef[3], x_model$coef[4] ) ) est[i] <- results$estimate } or_true <- exp(summary(nobias_model)$coef[2, 1]) or_adjusted <- median(est) test_that("odds ratio and confidence interval output", { expect_gt(or_adjusted, or_true - 0.15) expect_lt(or_adjusted, or_true + 0.15) expect_vector( single_run$ci, ptype = double(), size = 2 ) })