R Under development (unstable) (2024-07-17 r86903 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library("multcomp") Loading required package: mvtnorm Loading required package: survival Loading required package: TH.data Loading required package: MASS Attaching package: 'TH.data' The following object is masked from 'package:MASS': geyser > > ### compare results of mmod and glht.mlf > > ### code by Christian Ritz > "mmod" <- function(modelList, varName, seType = "san") + { + require(multcomp, quietly = TRUE) + require(sandwich, quietly = TRUE) + + if (length(seType) == 1) {seType <- rep(seType, length(modelList))} + if (length(varName) == 1) {varName <- rep(varName, length(modelList))} + + ## Extracting score contributions from the individual model fits + makeIIDdecomp <- function(modelObject, varName) + { + numObsUsed <- ifelse(inherits(modelObject, "coxph"), modelObject$n, nrow(modelObject$model)) + iidVec0 <- bread(modelObject)[varName, , drop = FALSE] %*% t(estfun(modelObject)) + moNAac <- modelObject$na.action + numObs <- numObsUsed + length(moNAac) + iidVec <- rep(0, numObs) + if (!is.null(moNAac)) + { + iidVec[-moNAac] <- sqrt(numObs/numObsUsed) * iidVec0 + } + else { + iidVec <- iidVec0 + } + list(iidVec = iidVec, numObsUsed = numObsUsed, numObs = numObs) + } + numModels <- length(modelList) + if (identical(length(varName), 1)) + { + varName <- rep(varName, numModels) + } + iidList <- mapply(makeIIDdecomp, modelList, varName, SIMPLIFY = FALSE) + iidresp <- matrix(as.vector(unlist(lapply(iidList, function(listElt) {listElt[[1]]}))), nrow = numModels, byrow = TRUE) + pickFct <- function(modelObject, varName, matchStrings) + { + as.vector(na.omit((coef(summary(modelObject))[varName, ])[matchStrings])) + } + + ## Retrieving parameter estimates from the individual fits + estVec <- as.vector(unlist(mapply(pickFct, modelList, varName, MoreArgs = list(matchStrings = c("Estimate", "coef"))))) + # "Estimate" or "coef" used in glm(), lm() and coxph() summary output, respectively + + ## Calculating the estimated variance-covariance matrix of the parameter estimates + numObs <- iidList[[1]]$numObs + covar <- (iidresp %*% t(iidresp)) / numObs + vcMat <- covar / numObs # Defining the finite-sample variance-covariance matrix + + ## Replacing sandwich estimates by model-based standard errors + modbas <- seType == "mod" + if (any(modbas)) + { + corMat <- cov2cor(vcMat) + ## Retrieving standard errors for the specified estimate from the individual fits + modSE <- as.vector(unlist(mapply(pickFct, modelList, varName, MoreArgs = list(matchStrings = c("Std. Error", "se(coef)"))))) + + sanSE <- sqrt(diag(vcMat)) + sanSE[modbas] <- modSE[modbas] + vcMat <- diag(sanSE) %*% corMat %*% diag(sanSE) + } + + ## Naming the parameter vector (easier way to extract the names of the model fits provided as a list in the first argument?) + names1 <- sub("list", "", deparse(substitute(modelList)), fixed = TRUE) + names2 <- sub("(", "", names1, fixed = TRUE) + names3 <- sub(")", "", names2, fixed = TRUE) + names4 <- sub(" ", "", names3, fixed = TRUE) + names(estVec) <- unlist(strsplit(names4, ",")) + + return(parm(coef = estVec, vcov = vcMat, df = 0)) + } > > > > > > set.seed(29) > ## Combining linear regression and logistic regression > y1 <- rnorm(100) > y2 <- factor(y1 + rnorm(100, sd = .1) > 0) > x1 <- gl(4, 25) > x2 <- runif(100, 0, 10) > > m1 <- lm(y1 ~ x1 + x2) > m2 <- glm(y2 ~ x1 + x2, family = binomial()) > ## Note that the same explanatory variables are considered in both models > ## but the resulting parameter estimates are on 2 different scales (original and log-odds scales) > > ## Simultaneous inference for the same parameter in the 2 model fits > simult.x12 <- mmod(list(m1, m2), c("x12", "x12")) > summary(glht(simult.x12)) Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1 == 0 -0.3537 0.2808 -1.260 0.312 m2 == 0 -0.6409 0.5681 -1.128 0.382 (Adjusted p values reported -- single-step method) > > ## Simultaneous inference for different parameters in the 2 model fits > simult.x12.x13 <- mmod(list(m1, m2), c("x12", "x13")) > summary(glht(simult.x12.x13)) Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1 == 0 -0.3537 0.2808 -1.260 0.351 m2 == 0 -0.8264 0.5874 -1.407 0.276 (Adjusted p values reported -- single-step method) > > ## Simultaneous inference for different and identical parameters in the 2 model fits > simult.x12x2.x13 <- mmod(list(m1, m1, m2), c("x12", "x13", "x13")) > summary(glht(simult.x12x2.x13)) Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) m1 == 0 -0.3537 0.2808 -1.260 0.407 m1 == 0 -0.4220 0.2801 -1.507 0.274 m2 == 0 -0.8264 0.5874 -1.407 0.323 (Adjusted p values reported -- single-step method) > confint(glht(simult.x12x2.x13)) Simultaneous Confidence Intervals Fit: NULL Quantile = 2.3087 95% family-wise confidence level Linear Hypotheses: Estimate lwr upr m1 == 0 -0.3537 -1.0019 0.2945 m1 == 0 -0.4220 -1.0687 0.2247 m2 == 0 -0.8264 -2.1825 0.5297 > > > ## Examples for binomial data > > ## Two independent outcomes > y1.1 <- rbinom(100, 1, 0.5) > y1.2 <- rbinom(100, 1, 0.5) > group <- factor(rep(c("A", "B"), 50)) > > modely1.1 <- glm(y1.1 ~ group, family = binomial) > modely1.2 <- glm(y1.2 ~ group, family = binomial) > > mmObj.y1 <- mmod(list(modely1.1, modely1.2), "groupB") > simult.y1 <- glht(mmObj.y1) > summary(simult.y1) Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) modely1.1 == 0 0.8473 0.4186 2.024 0.084 . modely1.2 == 0 0.2404 0.4008 0.600 0.796 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method) > > ## Two perfectly correlated outcomes > y2.1 <- rbinom(100, 1, 0.5) > y2.2 <- y2.1 > group <- factor(rep(c("A", "B"), 50)) > > modely2.1 <- glm(y2.1 ~ group, family = binomial) > modely2.2 <- glm(y2.2 ~ group, family = binomial) > > mmObj.y2 <- mmod(list(modely2.1, modely2.2), "groupB") > simult.y2 <- glht(mmObj.y2) > summary(simult.y2) Simultaneous Tests for General Linear Hypotheses Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) modely2.1 == 0 0.2412 0.4015 0.601 0.548 modely2.2 == 0 0.2412 0.4015 0.601 0.548 (Adjusted p values reported -- single-step method) > > > proc.time() user system elapsed 1.53 0.32 1.79