library(msme) # library(msme, lib.loc="lib") library(MASS) data(medpar) data(ufc) denom <- rep(1:5, each=299, times=1)*100 # m : binomial denominator w medpar oset <- rep(1:5, each=299, times=1)*100 # offset Poisson, NB, offset w medpar loset <- log(oset) # log of oset ## Normal ufc <- na.omit(ufc) ml.g <- ml_glm2(height.m ~ dbh.cm, formula2 = ~1, data = ufc, family = "normal", mean.link = "identity", scale.link = "log_s") lm.g <- lm(height.m ~ dbh.cm, data = ufc) ml.g lm.g summary(ml.g) summary(lm.g) ## NEGATIVE BINOMIAL (NB2) ------------------------------------------ glm.nb2 <- glm.nb(los ~ hmo + white, data = medpar) ml.nb2 <- ml_glm2(los ~ hmo + white, formula2 = ~1, data = medpar, family = "negBinomial", mean.link = "log", scale.link = "log_s") glm.nb2 ml.nb2 summary(glm.nb2) summary(ml.nb2) ## RATE NEGATIVE BINOMIAL (NB2)-------------------------------- glm.rnb2 <- glm.nb(los ~ hmo + white + offset(loset), data = medpar) ml.rnb2 <- ml_glm2(los ~ hmo + white, formula2 = ~1, data = medpar, offset=loset, family = "negBinomial", mean.link = "log", scale.link = "inverse_s") ml.rnb2 glm.rnb2 summary(glm.rnb2) summary(ml.rnb2) ## GAMMA CANONICAL-------------------------------------- #irls.gam <- irls(los ~ hmo + white, # family = "gamma", # link = "inverse", # data = medpar) #glm.gam <- glm(los ~ hmo + white, # family = Gamma, # data = medpar) #ml.gam <- ml_glm2(los ~ hmo + white, # formula2 = ~1, # data = medpar, # family = "gamma", # mean.link = "inverse", # scale.link = "inverse_s") #irls.gam #glm.gam #ml.gam #summary(irls.gam) #summary(glm.gam) #summary(ml.gam) ## INVERSE GAUSSIAN CANONICAL-------------------------------------- #irls.ivg <- irls(los ~ hmo + white, # family = "inv_gauss", # link = "inverse2", # data = medpar) #glm.ivg <- glm(los ~ hmo + white, # family = inverse.gaussian, # data = medpar) #irls.ivg #glm.ivg #summary(irls.ivg) #summary(glm.ivg)