test_that("estimate_relation - shape", { skip_if_not_installed("gamm4") skip_if_not_installed("rstanarm") skip_if_not_installed("lme4") skip_if_not_installed("glmmTMB") skip_if_not_installed("mgcv") # CI model <- lm(Petal.Length ~ Petal.Width, data = iris) estim <- estimate_relation(model, ci = 0.90) expect_equal(attributes(estim)$ci, 0.9) estim <- estimate_relation(model, ci = c(0.90, .95)) expect_equal(attributes(estim)$ci, c(0.90, 0.95)) expect_equal(dim(estim), c(10, 7)) # Range model <- lm(Petal.Length ~ Petal.Width * Species, data = iris) estim <- estimate_relation(model, length = 10) expect_equal(dim(estim), c(10, 6)) estim <- estimate_relation(model, length = 10, preserve_range = FALSE) expect_equal(dim(estim), c(30, 6)) }) test_that("estimate_link", { skip_if_not_installed("gamm4") skip_if_not_installed("rstanarm") skip_if_not_installed("lme4") skip_if_not_installed("glmmTMB") skip_if_not_installed("mgcv") # LMER4 model <- lme4::lmer(Petal.Length ~ Petal.Width + (1 | Species), data = iris) expect_equal(nrow(estimate_link(model, length = 5, verbose = FALSE)), 5) expect_equal(nrow(estimate_link(model, include_random = TRUE, preserve_range = FALSE, length = 5)), 15) # GLMMTMB model <- suppressWarnings(glmmTMB::glmmTMB(Petal.Length ~ Petal.Width + (1 | Species), data = iris)) expect_equal(nrow(estimate_link(model, length = 5, verbose = FALSE)), 5) expect_equal(nrow(estimate_link(model, include_random = TRUE, preserve_range = FALSE, length = 5)), 15) # MGCV model <- mgcv::gam(Petal.Length ~ Petal.Width + s(Sepal.Length), data = iris) expect_equal(dim(estimate_link(model, length = 3)), c(9, 6)) expect_equal(dim(estimate_link(model, include_smooth = FALSE, length = 3)), c(3, 5)) model <- mgcv::gamm(Petal.Length ~ Petal.Width + s(Sepal.Length), random = list(Species = ~1), data = iris) # GAMM4 model <- gamm4::gamm4(Petal.Length ~ Petal.Width + s(Sepal.Length), random = ~ (1 | Species), data = iris ) expect_equal(nrow(estimate_link(model, length = 3, verbose = FALSE)), 9) expect_equal(dim(estimate_link(model, include_smooth = FALSE, length = 3, verbose = FALSE)), c(3, 5)) # STAN_GAMM4 skip_if_not(.Platform$OS.type == "windows") model <- suppressWarnings(rstanarm::stan_gamm4(Petal.Length ~ Petal.Width + s(Sepal.Length), random = ~ (1 | Species), data = iris, iter = 100, chains = 2, refresh = 0 )) expect_equal(nrow(estimate_relation(model, length = 3)), 9) expect_equal(dim(estimate_link(model, include_smooth = FALSE, length = 3)), c(3, 5)) }) test_that("estimate_response - Bayesian", { skip_if_not_installed("gamm4") skip_if_not_installed("rstanarm") skip_if_not_installed("lme4") skip_if_not_installed("glmmTMB") skip_if_not_installed("mgcv") model <- suppressWarnings(rstanarm::stan_glm( mpg ~ wt + poly(cyl, 2, raw = TRUE), data = mtcars, refresh = 0, iter = 200, chains = 2 )) estim <- estimate_prediction(model, seed = 333) expect_equal(nrow(estim), nrow(mtcars)) model <- suppressWarnings(rstanarm::stan_glm( mpg ~ wt * as.factor(gear), data = mtcars, refresh = 0, iter = 200, chains = 2 )) estim <- estimate_prediction(model, data = "grid", seed = 333, preserve_range = FALSE ) expect_equal(dim(estim), c(30, 6)) model <- suppressWarnings(rstanarm::stan_glm( mpg ~ as.factor(gear) / wt, data = mtcars, refresh = 0, iter = 200, chains = 2 )) estim <- estimate_prediction(model) expect_equal(dim(estim), c(32, 7)) model <- suppressWarnings( rstanarm::stan_glm( Sepal.Width ~ Petal.Width, data = iris, refresh = 0, iter = 200, chains = 2 ) ) estim <- estimate_link(model, keep_iterations = TRUE) draws <- bayestestR::reshape_iterations(estim) expect_equal(c(nrow(draws), ncol(draws)), c(2000, 8)) # Non-sampling algorithms model <- rstanarm::stan_glm(mpg ~ disp, data = mtcars, algorithm = "meanfield", refresh = 0) estim <- estimate_link(model, keep_iterations = TRUE) expect_equal(dim(estim), c(10, 1005)) }) test_that("estimate_response - Frequentist", { skip_if_not_installed("gamm4") skip_if_not_installed("rstanarm") skip_if_not_installed("lme4") skip_if_not_installed("glmmTMB") skip_if_not_installed("mgcv") model <- lm(mpg ~ wt + cyl, data = mtcars) estim <- estimate_expectation(model) expect_equal(dim(estim), c(32, 7)) estim <- estimate_expectation(model, ci = NULL) expect_equal(dim(estim), c(32, 4)) model <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial") estim <- estimate_link(model, by = "wt") expect_equal(dim(estim), c(10, 6)) data <- mtcars data$gear <- as.factor(data$gear) model <- lme4::lmer(wt ~ cyl + (1 | gear), data = data) estim <- estimate_link(model) expect_equal(dim(estim), c(10, 6)) estim <- estimate_expectation(model) expect_equal(dim(estim), c(32, 7)) model <- lme4::glmer(vs ~ cyl + (1 | gear), data = data, family = "binomial") estim <- estimate_link(model) expect_equal(dim(estim), c(10, 6)) estim <- estimate_expectation(model) expect_equal(dim(estim), c(32, 7)) }) test_that("estimate_response - VisMatrix", { skip_if_not_installed("gamm4") skip_if_not_installed("rstanarm") skip_if_not_installed("lme4") skip_if_not_installed("glmmTMB") skip_if_not_installed("mgcv") m <- lm(Sepal.Length ~ Petal.Length * Petal.Width, data = iris) vm <- visualisation_matrix(m, by = c("Petal.Length", "Petal.Width = seq(-3, 3)")) estim <- estimate_relation(vm) expect_identical(dim(estim), c(70L, 6L)) expect_named(estim, c("Petal.Length", "Petal.Width", "Predicted", "SE", "CI_low", "CI_high")) })