skip_on_cran() skip_if_not_installed("emmeans") skip_if_not_installed("marginaleffects") test_that("standardize() - estimate_means()", { data(mtcars) dat <- mtcars dat$gear <- as.factor(dat$gear) dat$cyl <- as.factor(dat$cyl) # Simple model <- lm(mpg ~ cyl, data = dat) estim <- estimate_means(model, "cyl", backend = "marginaleffects") out1 <- standardize(estim) out2 <- unstandardize(out1) expect_equal(as.vector(out1$Mean), c(1.0906, -0.0577, -0.82805), tolerance = 1e-4) expect_equal(as.vector(out2$Mean), estim$Mean, tolerance = 1e-4) }) test_that("standardize() - estimate_predicted", { data(mtcars) dat <- mtcars dat$gear <- as.factor(dat$gear) dat$cyl <- as.factor(dat$cyl) # Simple model <- lm(mpg ~ cyl, data = dat) estim <- estimate_relation(model, by = "cyl") out1 <- standardize(estim) out2 <- unstandardize(out1) expect_equal(as.vector(out1$Predicted), c(1.0906, -0.0577, -0.82805), tolerance = 1e-4) expect_equal(as.vector(out2$Predicted), estim$Predicted, tolerance = 1e-4) }) test_that("standardize() - estimate_contrasts()", { data(mtcars) dat <- mtcars dat$gear <- as.factor(dat$gear) dat$cyl <- as.factor(dat$cyl) # Simple model <- lm(mpg ~ cyl, data = dat) estim <- estimate_contrasts(model, "cyl", backend = "marginaleffects") out1 <- standardize(estim) out2 <- unstandardize(out1) expect_equal(as.vector(out1$Difference), c(-1.14831, -1.91866, -0.77035), tolerance = 1e-4) expect_equal(as.vector(out2$Difference), estim$Difference, tolerance = 1e-4) })