skip_on_cran() skip_if_not_installed("glmmTMB") skip_if_not_installed("datawizard") test_that("maihda", { # sample data set data(efc, package = "modelbased") efc <- datawizard::to_factor(efc, select = c("c161sex", "c172code", "c175empl")) efc <- datawizard::recode_values( efc, select = "c160age", recode = list(`1` = "min:40", `2` = 41:64, `3` = "65:max") ) efc <- datawizard::data_rename( efc, select = c("c161sex", "c160age", "quol_5", "c175empl"), replacement = c("gender", "age", "qol", "employed") ) efc <- datawizard::data_modify(efc, age = factor(age, labels = c("-40", "41-64", "65+"))) set.seed(1) efc$weights <- abs(rnorm(nrow(efc), mean = 1, sd = 0.1)) m_null <- glmmTMB::glmmTMB( qol ~ 1 + (1 | gender:employed:age), data = efc, weights = weights ) out <- estimate_relation(m_null, by = c("gender", "employed", "age")) expect_identical(dim(out), c(12L, 9L)) out <- estimate_contrasts(out, contrast = c("gender", "employed", "age")) expect_identical(dim(out), c(66L, 8L)) })