skip_if_not_installed("performance") test_that("describe_nonlinear", { set.seed(123) d <- data.frame(x = rnorm(200)) d$y <- d$x^2 + rnorm(200, 0, 0.5) model <- lm(y ~ poly(x, 2), data = d) link_data <- estimate_relation(model, length = 100) out <- describe_nonlinear(link_data, x = "x") expect_equal(out$Start, c(-2.309, -0.011), tolerance = 1e-4) expect_equal(out$End, c(-0.011, 3.241), tolerance = 1e-4) expect_error(describe_nonlinear(link_data), regex = "The name of the predictor") expect_error(describe_nonlinear(link_data, x = "x", y = "test"), regex = "The name of the response") }) # test_that("estimate_smooth", { # skip_on_cran() # skip_if_not_installed("rstanarm") # set.seed(333) # # model <- # suppressWarnings( # rstanarm::stan_gamm4( # Sepal.Width ~ s(Petal.Length), # data = iris, # refresh = 0, # iter = 200, # chains = 2, # seed = 333 # ) # ) # estim <- estimate_smooth(model) # expect_equal(ncol(estim), 6) # # model <- # suppressWarnings( # rstanarm::stan_glm( # Sepal.Width ~ poly(Petal.Length, 2), # data = iris, # refresh = 0, # iter = 200, # chains = 2, # seed = 333 # ) # ) # estim <- estimate_smooth(model) # expect_equal(c(nrow(estim), ncol(estim)), c(2, 6)) # # model <- # suppressWarnings( # rstanarm::stan_glm( # Sepal.Width ~ Species * poly(Petal.Length, 2), # data = iris, # refresh = 0, # iter = 200, # chains = 2, # seed = 333 # ) # ) # estim <- estimate_smooth(model) # expect_equal(ncol(estim), 6) # estim <- estimate_smooth(model, levels = "Species") # expect_equal(ncol(estim), 7) # }) #