# mmrm_control ---- test_that("mmrm_control works as expected", { result <- mmrm_control( optimizer_fun = stats::optim, optimizer_args = list(method = "L-BFGS-B") ) expected <- structure( list( optimizers = result$optimizers, start = NULL, accept_singular = TRUE, method = "Satterthwaite", vcov = "Asymptotic", n_cores = 1L, drop_visit_levels = TRUE ), class = "mmrm_control" ) expect_identical(result, expected) }) # h_mmrm_tmb_formula_parts ---- test_that("h_mmrm_tmb_formula_parts works as expected", { result <- expect_silent(h_mmrm_tmb_formula_parts( FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) )) expected <- structure( list( formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID), model_formula = FEV1 ~ RACE + SEX + ARMCD + AVISIT + ARMCD:AVISIT, full_formula = FEV1 ~ RACE + SEX + ARMCD + AVISIT + USUBJID + ARMCD:AVISIT, cov_type = "us", is_spatial = FALSE, visit_var = "AVISIT", subject_var = "USUBJID", group_var = NULL ), class = "mmrm_tmb_formula_parts" ) expect_identical(result, expected) result_group <- expect_silent(h_mmrm_tmb_formula_parts( FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | ARMCD / USUBJID) )) expected_group <- structure( list( formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | ARMCD / USUBJID), model_formula = FEV1 ~ RACE + SEX + ARMCD + AVISIT + ARMCD:AVISIT, full_formula = FEV1 ~ RACE + SEX + ARMCD + AVISIT + USUBJID + ARMCD:AVISIT, cov_type = "us", is_spatial = FALSE, visit_var = "AVISIT", subject_var = "USUBJID", group_var = "ARMCD" ), class = "mmrm_tmb_formula_parts" ) expect_identical(result_group, expected_group) expect_error( h_mmrm_tmb_formula_parts(FEV1 ~ RACE + AVISIT + USUBJID), paste( "Covariance structure must be specified in formula.", "Possible covariance structures include:", "us, toep, toeph, ar1, ar1h, ad, adh, cs, csh" ), fixed = TRUE ) expect_error( h_mmrm_tmb_formula_parts(FEV1 ~ RACE + arh1(AVISIT | USUBJID)), paste( "Covariance structure must be specified in formula.", "Possible covariance structures include:", "us, toep, toeph, ar1, ar1h, ad, adh, cs, csh" ), fixed = TRUE ) expect_error( h_mmrm_tmb_formula_parts(FEV1 ~ RACE + ar1h(AVISIT | USUBJID) + cs(AVISIT | USUBJID)), paste0( "Only one covariance structure can be specified. ", "Currently specified covariance structures are: ar1h, cs" ), fixed = TRUE ) expect_error( h_mmrm_tmb_formula_parts(FEV1 ~ RACE + cs(AVISIT)), "Covariance structure must be of the form `time | (group /) subject`", fixed = TRUE ) expect_error( h_mmrm_tmb_formula_parts(FEV1 ~ RACE + cs(AVISIT | RACE + ARMCD / USUBJID)), "Covariance structure must be of the form `time | (group /) subject`", fixed = TRUE ) expect_error( h_mmrm_tmb_formula_parts(FEV1 ~ RACE + cs(AVISIT, AVISIT | RACE + ARMCD / USUBJID)), "Covariance structure must be of the form `time | (group /) subject`", fixed = TRUE ) }) test_that("h_mmrm_tmb_formula_parts works without covariates", { result <- expect_silent(h_mmrm_tmb_formula_parts( FEV1 ~ ar1(AVISIT | USUBJID) )) expected <- structure( list( formula = FEV1 ~ ar1(AVISIT | USUBJID), model_formula = FEV1 ~ 1, full_formula = FEV1 ~ USUBJID + AVISIT, cov_type = "ar1", is_spatial = FALSE, visit_var = "AVISIT", subject_var = "USUBJID", group_var = NULL ), class = "mmrm_tmb_formula_parts" ) expect_identical(result, expected) }) test_that("h_mmrm_tmb_formula_parts works as expected for antedependence", { result <- expect_silent(h_mmrm_tmb_formula_parts( FEV1 ~ RACE + SEX + ARMCD * AVISIT + ad(AVISIT | USUBJID) )) expected <- structure( list( formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + ad(AVISIT | USUBJID), model_formula = FEV1 ~ RACE + SEX + ARMCD + AVISIT + ARMCD:AVISIT, full_formula = FEV1 ~ RACE + SEX + ARMCD + AVISIT + USUBJID + ARMCD:AVISIT, cov_type = "ad", is_spatial = FALSE, visit_var = "AVISIT", subject_var = "USUBJID", group_var = NULL ), class = "mmrm_tmb_formula_parts" ) expect_identical(result, expected) }) # h_mmrm_tmb_data ---- test_that("h_mmrm_tmb_data works as expected", { formula <- FEV1 ~ RACE + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) result <- expect_silent(h_mmrm_tmb_data( formula_parts, fev_data, fev_data$WEIGHT, reml = FALSE, singular = "error", drop_visit_levels = TRUE )) expect_class(result, "mmrm_tmb_data") expect_named( result, c( "full_frame", "data", "x_matrix", "x_cols_aliased", "coordinates", "y_vector", "weights_vector", "n_visits", "n_subjects", "subject_zero_inds", "subject_n_visits", "cov_type", "is_spatial_int", "reml", "subject_groups", "n_groups" ) ) expect_matrix(result$x_matrix, nrows = 537, ncols = 3, any.missing = FALSE) expect_numeric(result$y_vector, len = 537, any.missing = FALSE) expect_identical(result$n_visits, 4L) # 4 visits. expect_integer(result$subject_zero_inds, len = 197, unique = TRUE, sorted = TRUE, any.missing = FALSE) expect_identical(result$cov_type, "us") # unstructured. expect_identical(result$reml, 0L) # ML. expect_identical(result$subject_groups, factor(rep(0L, 197))) # all in the same group expect_identical(result$n_groups, 1L) # number of groups }) test_that("h_mmrm_tmb_data works as expected with allow_na_response", { formula <- FEV1 ~ RACE + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) result <- expect_silent(h_mmrm_tmb_data( formula_parts, fev_data, fev_data$WEIGHT, reml = FALSE, singular = "error", drop_visit_levels = TRUE, allow_na_response = TRUE )) expect_class(result, "mmrm_tmb_data") expect_named( result, c( "full_frame", "data", "x_matrix", "x_cols_aliased", "coordinates", "y_vector", "weights_vector", "n_visits", "n_subjects", "subject_zero_inds", "subject_n_visits", "cov_type", "is_spatial_int", "reml", "subject_groups", "n_groups" ) ) expect_matrix(result$x_matrix, nrows = 800, ncols = 3, any.missing = FALSE) expect_numeric(result$y_vector, len = 800, any.missing = TRUE) expect_identical(result$n_visits, 4L) # 4 visits. expect_integer(result$subject_zero_inds, len = 200, unique = TRUE, sorted = TRUE, any.missing = FALSE) expect_identical(result$cov_type, "us") # unstructured. expect_identical(result$reml, 0L) # ML. expect_identical(result$subject_groups, factor(rep(0L, 200L))) # all in the same group expect_identical(result$n_groups, 1L) # number of groups }) test_that("h_mmrm_tmb_data do not allow NA in covariates with allow_na_response", { formula <- FEV1 ~ RACE + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) fev_data2 <- fev_data fev_data2$RACE[1:20] <- NA result <- expect_silent(h_mmrm_tmb_data( formula_parts, fev_data2, fev_data$WEIGHT, reml = FALSE, singular = "error", drop_visit_levels = TRUE, allow_na_response = TRUE )) expect_class(result, "mmrm_tmb_data") expect_named( result, c( "full_frame", "data", "x_matrix", "x_cols_aliased", "coordinates", "y_vector", "weights_vector", "n_visits", "n_subjects", "subject_zero_inds", "subject_n_visits", "cov_type", "is_spatial_int", "reml", "subject_groups", "n_groups" ) ) expect_matrix(result$x_matrix, nrows = 780, ncols = 3, any.missing = FALSE) expect_numeric(result$y_vector, len = 780, any.missing = TRUE) expect_identical(result$n_visits, 4L) # 4 visits. expect_integer(result$subject_zero_inds, len = 195, unique = TRUE, sorted = TRUE, any.missing = FALSE) expect_identical(result$cov_type, "us") # unstructured. expect_identical(result$reml, 0L) # ML. expect_identical(result$subject_groups, factor(rep(0L, 195L))) # all in the same group expect_identical(result$n_groups, 1L) # number of groups }) test_that("h_mmrm_tmb_data works as expected for grouped covariance", { formula <- FEV1 ~ RACE + us(AVISIT | ARMCD / USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) result <- expect_silent(h_mmrm_tmb_data( formula_parts, fev_data, reml = FALSE, weights = rep(1, nrow(fev_data)), singular = "error", drop_visit_levels = TRUE )) expect_class(result, "mmrm_tmb_data") expect_named( result, c( "full_frame", "data", "x_matrix", "x_cols_aliased", "coordinates", "y_vector", "weights_vector", "n_visits", "n_subjects", "subject_zero_inds", "subject_n_visits", "cov_type", "is_spatial_int", "reml", "subject_groups", "n_groups" ) ) expect_matrix(result$x_matrix, nrows = 537, ncols = 3, any.missing = FALSE) expect_numeric(result$y_vector, len = 537, any.missing = FALSE) expect_identical(result$n_visits, 4L) # 4 visits. expect_integer(result$subject_zero_inds, len = 197, unique = TRUE, sorted = TRUE, any.missing = FALSE) expect_identical(result$cov_type, "us") # unstructured. expect_identical(result$reml, 0L) # ML. expect_factor(result$subject_groups, levels = c("PBO", "TRT")) # ARMCD is the group expect_identical(result$n_groups, 2L) # number of groups }) test_that("h_mmrm_tmb_data works as expected for mutli-dimensional spatial exponential covariance", { formula <- FEV1 ~ RACE + sp_exp(VISITN, VISITN2 | ARMCD / USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) result <- expect_silent(h_mmrm_tmb_data( formula_parts, fev_data, reml = FALSE, weights = rep(1, nrow(fev_data)), singular = "error", drop_visit_levels = TRUE )) expect_class(result, "mmrm_tmb_data") expect_named( result, c( "full_frame", "data", "x_matrix", "x_cols_aliased", "coordinates", "y_vector", "weights_vector", "n_visits", "n_subjects", "subject_zero_inds", "subject_n_visits", "cov_type", "is_spatial_int", "reml", "subject_groups", "n_groups" ) ) expect_matrix(result$x_matrix, nrows = 537, ncols = 3, any.missing = FALSE) expect_numeric(result$y_vector, len = 537, any.missing = FALSE) expect_identical(result$n_visits, 4L) expect_integer(result$subject_zero_inds, len = 197, unique = TRUE, sorted = TRUE, any.missing = FALSE) expect_identical(result$cov_type, "sp_exp") # spatial exponential expect_identical(result$reml, 0L) # ML. expect_factor(result$subject_groups, levels = c("PBO", "TRT")) # ARMCD is the group expect_identical(result$n_groups, 2L) # number of groups expect_matrix(result$coordinates, nrows = 537L, ncols = 2L) }) test_that("h_mmrm_tmb_data works also for character ID variable", { formula <- FEV1 ~ RACE + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) dat <- fev_data dat$USUBJID <- as.character(dat$USUBJID) # nolint result <- expect_silent(h_mmrm_tmb_data( formula_parts, dat, weights = rep(1, nrow(dat)), reml = FALSE, singular = "error", drop_visit_levels = TRUE )) expected <- expect_silent(h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE, singular = "error", drop_visit_levels = TRUE )) expect_identical(result, expected) }) test_that("h_mmrm_tmb_data correctly processes design matrix below full rank correctly", { formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) dat <- fev_data[11:25, ] result <- expect_silent(h_mmrm_tmb_data( formula_parts, dat, weights = rep(1, nrow(dat)), reml = FALSE, singular = "drop", drop_visit_levels = TRUE )) assert_true(qr(result$x_matrix)$rank == ncol(result$x_matrix)) assert_true(sum(result$x_cols_aliased) == 2) assert_set_equal(names(which(!result$x_cols_aliased)), colnames(result$x_matrix)) }) test_that("h_mmrm_tmb_data gives error for rank deficient design matrix when not accepted", { formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) dat <- fev_data[11:25, ] expect_error( h_mmrm_tmb_data( formula_parts, dat, weights = rep(1, nrow(dat)), reml = FALSE, singular = "error", drop_visit_levels = TRUE ), paste( "design matrix only has rank 8 and 2 columns (ARMCDTRT:AVISITVIS2, ARMCDTRT:AVISITVIS3)", "could be dropped to achieve full rank 10 by using `accept_singular = TRUE`" ), fixed = TRUE ) }) test_that("h_mmrm_tmb_data catches case with multiple time points per subject early", { formula_parts <- structure( list( formula = y ~ cd + ad(visit | id), model_formula = y ~ cd, full_formula = y ~ cd + id + visit, cov_type = "ad", is_spatial = FALSE, visit_var = "visit", subject_var = "id", group_var = NULL ), class = "mmrm_tmb_formula_parts" ) set.seed(123) dat <- data.frame( id = as.factor(c(1, 1, 1, 2, 2, 2)), visit = as.factor(c(1, 2, 3, 2, 2, 3)), cd = c(1, 2, 3, 4, 5, 6), y = rnorm(6) ) expect_error( h_mmrm_tmb_data( formula_parts, data = dat, weights = rep_len(1, nrow(dat)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ), paste0( "time points have to be unique for each subject, detected following duplicates in data:", "\\s+id visit\\s+5\\s+2\\s+2" # Make sure we get the nice duplicates printed there. ) ) }) test_that("h_mmrm_tmb_data has no side effect of overwrite the weights in global env", { weights <- "this is global weights" formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) res <- h_mmrm_tmb_data( formula_parts, data = fev_data, weights = rep_len(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) expect_identical(weights, "this is global weights") }) test_that("h_mmrm_tmb_data will not be affecte by `weights` in data", { weights <- fev_data$WEIGHT fev_data$weights <- weights formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) res <- h_mmrm_tmb_data( formula_parts, data = fev_data, weights = rep_len(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) expect_identical(res$weights_vector, rep_len(1, nrow(res$x_matrix))) expect_identical(fev_data$weights, weights) }) test_that("h_mmrm_tmb_data works even if na.action is not na.omit", { na_action <- getOption("na.action") on.exit(options(na.action = na_action)) options(na.action = "na.omit") formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) res1 <- h_mmrm_tmb_data( formula_parts, data = fev_data, weights = rep_len(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) options(na.action = "na.pass") expect_warning( res2 <- h_mmrm_tmb_data( formula_parts, data = fev_data, weights = rep_len(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ), "na.action is always set to `na.omit` for `mmrm` fit!" ) expect_identical(res1, res2) options(na.action = "na.fail") expect_warning( res3 <- h_mmrm_tmb_data( formula_parts, data = fev_data, weights = rep_len(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ), "na.action is always set to `na.omit` for `mmrm` fit!" ) expect_identical(res1, res3) options(na.action = "na.exclude") expect_warning( res4 <- h_mmrm_tmb_data( formula_parts, data = fev_data, weights = rep_len(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ), "na.action is always set to `na.omit` for `mmrm` fit!" ) expect_identical(res1, res4) }) test_that("h_mmrm_tmb_data errors if too many visit levels", { skip_if(interactive()) formula <- FEV1 ~ RACE + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) options("mmrm.max_visits" = 2) on.exit(options("mmrm.max_visits" = NULL)) result <- expect_error(h_mmrm_tmb_data( formula_parts, fev_data, fev_data$WEIGHT, reml = FALSE, singular = "error", drop_visit_levels = TRUE ), "Visit levels too large!") }) # h_mmrm_tmb_parameters ---- test_that("h_mmrm_tmb_parameters works as expected without start values", { formula <- FEV1 ~ SEX + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = rep(0, 10)) expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with start values", { formula <- FEV1 ~ SEX + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) start <- 1:10 result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = start)) expected <- list(theta = start) expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with antedependence", { formula <- FEV1 ~ SEX + ad(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = rep(0, 4)) # 4 parameters. expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with heterogeneous antedependence", { formula <- FEV1 ~ SEX + adh(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = rep(0, 7)) # 2 * 4 - 1 parameters. expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with Toeplitz", { formula <- FEV1 ~ SEX + toep(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = rep(0, 4)) # 4 parameters. expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with heterogeneous Toeplitz", { formula <- FEV1 ~ SEX + toeph(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = rep(0, 7)) # 2 * 4 - 1 parameters. expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with autoregressive", { formula <- FEV1 ~ SEX + ar1(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = c(0, 0.5)) expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with heterogeneous autoregressive", { formula <- FEV1 ~ SEX + ar1h(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = c(rep(0, 4), 0.5)) # 4 + 1 parameters. expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with compound symmetry", { formula <- FEV1 ~ SEX + cs(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = rep(0, 2)) expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with heterogeneous compound symmetry", { formula <- FEV1 ~ SEX + csh(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE, singular = "error", drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = rep(0, 5)) # 4 + 1 parameters. expect_identical(result, expected) }) test_that("h_mmrm_tmb_parameters works as expected with spatial exponential", { formula <- FEV1 ~ SEX + sp_exp(VISITN | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, reml = TRUE, singular = "error", weights = rep(1, nrow(fev_data)), drop_visit_levels = TRUE ) result <- expect_silent(h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL)) expected <- list(theta = rep(0, 2)) # 1 + 1 parameters. expect_identical(result, expected) }) # h_mmrm_tmb_assert_start ---- test_that("h_mmrm_tmb_assert_start passes as expected for sane start values", { tmb_object <- list( fn = function(par) sum(par), gr = function(par) par, par = 1:2 ) result <- expect_silent(h_mmrm_tmb_assert_start(tmb_object)) expect_null(result) }) test_that("h_mmrm_tmb_assert_start fails as expected for NaN objective function at start", { tmb_object <- list( fn = function(par) NaN, gr = function(par) par, par = 1:2 ) expect_error( h_mmrm_tmb_assert_start(tmb_object), "negative log-likelihood is NaN at starting parameter values" ) }) test_that("h_mmrm_tmb_assert_start fails as expected for NaN gradient function at start", { tmb_object <- list( fn = function(par) sum(par), gr = function(par) c(NaN, 0.5), par = 1:2 ) expect_error( h_mmrm_tmb_assert_start(tmb_object), "some elements of gradient are NaN at starting parameter values" ) }) # h_mmrm_tmb_check_conv ---- test_that("h_mmrm_tmb_check_conv passes as expected for sane optimization result", { tmb_opt <- list( par = 1:5, objective = 10, convergence = 0, message = NULL ) mmrm_tmb <- structure( list(theta_vcov = diag(1)), class = "mmrm_tmb" ) result <- expect_silent(h_mmrm_tmb_check_conv(tmb_opt, mmrm_tmb)) expect_null(result) }) test_that("h_mmrm_tmb_check_conv raises singular hessian warning as expected", { tmb_opt <- list( par = 1:5, objective = 10, convergence = 0, message = NULL ) mmrm_tmb <- structure( list(theta_vcov = try(solve(matrix(0, 1, 1)), silent = TRUE)), class = "mmrm_tmb" ) expect_warning( h_mmrm_tmb_check_conv(tmb_opt, mmrm_tmb), "Model convergence problem: hessian is singular, theta_vcov not available" ) }) test_that("h_mmrm_tmb_check_conv warns if convergence code signals non-convergence", { tmb_opt <- list( par = 1:5, objective = 10, convergence = 1, message = "something ugly" ) mmrm_tmb <- structure( list(theta_vcov = diag(1)), class = "mmrm_tmb" ) expect_warning( h_mmrm_tmb_check_conv(tmb_opt, mmrm_tmb), "Model convergence problem: something ugly." ) }) test_that("h_mmrm_tmb_check_conv warns if theta_vcov contains missing value", { tmb_opt <- list( par = 1:5, objective = 10, convergence = 0, message = NULL ) mmrm_tmb <- structure( list(theta_vcov = diag(NA, nrow = 2)), class = "mmrm_tmb" ) expect_warning( h_mmrm_tmb_check_conv(tmb_opt, mmrm_tmb), "Model convergence problem: theta_vcov contains non-finite values." ) }) test_that("h_mmrm_tmb_check_conv warns if theta_vcov is singular", { tmb_opt <- list( par = 1:5, objective = 10, convergence = 0, message = NULL ) chol_m <- matrix(c(1, 0, 0, 2, 3, 0, 0, 0, 0), nrow = 3) mmrm_tmb <- structure( list(theta_vcov = chol_m %*% t(chol_m)), class = "mmrm_tmb" ) expect_warning( h_mmrm_tmb_check_conv(tmb_opt, mmrm_tmb), "Model convergence problem: theta_vcov is numerically singular." ) }) # h_mmrm_tmb_extract_cov ---- test_that("h_mmrm_tmb_extract_cov works as expected", { formula <- FEV1 ~ RACE + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, reml = FALSE, weights = rep(1, nrow(fev_data)), singular = "error", drop_visit_levels = TRUE ) tmb_parameters <- h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL) tmb_object <- TMB::MakeADFun( data = tmb_data, parameters = tmb_parameters, hessian = TRUE, DLL = "mmrm", silent = TRUE ) tmb_opt <- with( tmb_object, do.call( what = stats::nlminb, args = list(par, fn, gr, hessian = he) ) ) tmb_report <- tmb_object$report(par = tmb_opt$par) result <- h_mmrm_tmb_extract_cov(tmb_report, tmb_data, "AVISIT", FALSE) expect_identical( colnames(result), sprintf("VIS%d", 1:4) ) expect_identical( rownames(result), sprintf("VIS%d", 1:4) ) }) test_that("h_mmrm_tmb_extract_cov works as expected for group covariance", { formula <- FEV1 ~ RACE + ar1(AVISIT | ARMCD / USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, reml = FALSE, weights = rep(1, nrow(fev_data)), singular = "error", drop_visit_levels = TRUE ) tmb_parameters <- h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL, n_groups = 2L) tmb_object <- TMB::MakeADFun( data = tmb_data, parameters = tmb_parameters, hessian = TRUE, DLL = "mmrm", silent = TRUE ) tmb_opt <- with( tmb_object, do.call( what = stats::nlminb, args = list(par, fn, gr, hessian = he) ) ) tmb_report <- tmb_object$report(par = tmb_opt$par) result <- h_mmrm_tmb_extract_cov(tmb_report, tmb_data, formula_parts$visit_var, formula_parts$is_spatial) expect_identical( names(result), c("PBO", "TRT") ) expect_identical( colnames(result$PBO), sprintf("VIS%d", 1:4) ) expect_identical( rownames(result$PBO), sprintf("VIS%d", 1:4) ) }) # h_mmrm_tmb_fit ---- test_that("h_mmrm_tmb_fit works as expected", { formula <- FEV1 ~ RACE + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) weights <- rep(1, nrow(fev_data)) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = weights, reml = FALSE, singular = "error", drop_visit_levels = TRUE ) tmb_parameters <- h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL) tmb_object <- TMB::MakeADFun( data = tmb_data, parameters = tmb_parameters, hessian = TRUE, DLL = "mmrm", silent = TRUE ) tmb_opt <- with( tmb_object, do.call( what = stats::nlminb, args = list(par, fn, gr, hessian = he) ) ) result <- expect_silent(h_mmrm_tmb_fit( tmb_object, tmb_opt, formula_parts, tmb_data )) expect_class(result, "mmrm_tmb") expect_named(result, c( "cov", "beta_est", "beta_vcov", "beta_vcov_inv_L", "beta_vcov_inv_D", "theta_est", "theta_vcov", "neg_log_lik", "formula_parts", "data", "weights", "reml", "opt_details", "tmb_object", "tmb_data" )) expect_identical(rownames(result$cov), c("VIS1", "VIS2", "VIS3", "VIS4")) expect_identical(colnames(result$cov), c("VIS1", "VIS2", "VIS3", "VIS4")) expect_named(result$beta_est, colnames(tmb_data$x_matrix)) expect_identical(rownames(result$beta_vcov), colnames(tmb_data$x_matrix)) expect_identical(colnames(result$beta_vcov), colnames(tmb_data$x_matrix)) # Check LDL^T decomposition of inverse beta_vcov. expect_matrix(result$beta_vcov_inv_L, nrows = nrow(result$beta_vcov), ncols = ncol(result$beta_vcov)) expect_numeric(result$beta_vcov_inv_L[lower.tri(result$beta_vcov_inv_L)], any.missing = FALSE) expect_true(all(result$beta_vcov_inv_L[lower.tri(result$beta_vcov_inv_L)] != 0)) expect_true(all(diag(result$beta_vcov_inv_L) == 1)) expect_true(all(result$beta_vcov_inv_L[upper.tri(result$beta_vcov_inv_L)] == 0)) expect_numeric(result$beta_vcov_inv_D, lower = .Machine$double.xmin, len = nrow(result$beta_vcov)) expect_equal( with(result, unname(beta_vcov) %*% beta_vcov_inv_L %*% diag(beta_vcov_inv_D) %*% t(beta_vcov_inv_L)), diag(nrow(result$beta_vcov)) ) expect_matrix(result$theta_vcov, nrows = length(result$theta_est), ncols = length(result$theta_est)) expect_number(result$neg_log_lik) expect_list(result$formula_parts) expect_data_frame(result$data) expect_false(result$reml) expect_list(result$opt_details) expect_list(result$tmb_object) expect_class(result$tmb_data, "mmrm_tmb_data") }) test_that("h_mmrm_tmb_fit works as expected for grouped covariance", { formula <- FEV1 ~ RACE + cs(AVISIT | ARMCD / USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) weights <- rep(1, nrow(fev_data)) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, reml = TRUE, weights = weights, singular = "drop", drop_visit_levels = TRUE ) tmb_parameters <- h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL, n_groups = tmb_data$n_groups) tmb_object <- TMB::MakeADFun( data = tmb_data, parameters = tmb_parameters, hessian = TRUE, DLL = "mmrm", silent = TRUE ) tmb_opt <- with( tmb_object, do.call( what = stats::nlminb, args = list(par, fn, gr, hessian = he) ) ) result <- expect_silent(h_mmrm_tmb_fit( tmb_object, tmb_opt, formula_parts, tmb_data )) expect_class(result, "mmrm_tmb") expect_named(result, c( "cov", "beta_est", "beta_vcov", "beta_vcov_inv_L", "beta_vcov_inv_D", "theta_est", "theta_vcov", "neg_log_lik", "formula_parts", "data", "weights", "reml", "opt_details", "tmb_object", "tmb_data" )) expect_identical(rownames(result$cov$PBO), c("VIS1", "VIS2", "VIS3", "VIS4")) expect_identical(colnames(result$cov$PBO), c("VIS1", "VIS2", "VIS3", "VIS4")) expect_identical(rownames(result$cov$TRT), c("VIS1", "VIS2", "VIS3", "VIS4")) expect_identical(colnames(result$cov$TRT), c("VIS1", "VIS2", "VIS3", "VIS4")) expect_named(result$beta_est, colnames(tmb_data$x_matrix)) expect_identical(rownames(result$beta_vcov), colnames(tmb_data$x_matrix)) expect_identical(colnames(result$beta_vcov), colnames(tmb_data$x_matrix)) expect_matrix(result$theta_vcov, nrows = length(result$theta_est), ncols = length(result$theta_est)) expect_number(result$neg_log_lik) expect_list(result$formula_parts) expect_data_frame(result$data) expect_true(result$reml) expect_list(result$opt_details) expect_list(result$tmb_object) expect_class(result$tmb_data, "mmrm_tmb_data") }) # fit_mmrm ---- ## unstructured ---- test_that("fit_mmrm works as expected in a simple model without covariates and ML", { formula <- FEV1 ~ us(AVISIT | USUBJID) data <- fev_data result <- expect_silent(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = FALSE)) expect_class(result, "mmrm_tmb") expect_list(result) expect_named( result, c( "cov", "beta_est", "beta_vcov", "beta_vcov_inv_L", "beta_vcov_inv_D", "theta_est", "theta_vcov", "neg_log_lik", "formula_parts", "data", "weights", "reml", "opt_details", "tmb_object", "tmb_data", "call", "optimizer" ) ) # See design/SAS/sas_log_simple.txt for the source of numbers. expect_equal(2 * result$neg_log_lik, 3700.68707570) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3499, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.8367, tolerance = 1e-4) result_cov_tri <- result$cov[lower.tri(result$cov)] expected_cov_tri <- c(49.8121, 2.6246, -40.5833, 4.8398, -8.6607, 22.9163) expect_equal(result_cov_tri, expected_cov_tri, tolerance = 1e-3) }) test_that("fit_mmrm works as expected in a simple model without covariates and REML", { formula <- FEV1 ~ us(AVISIT | USUBJID) data <- fev_data result <- expect_silent(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = TRUE)) expect_class(result, "mmrm_tmb") expect_list(result) expect_named( result, c( "cov", "beta_est", "beta_vcov", "beta_vcov_inv_L", "beta_vcov_inv_D", "theta_est", "theta_vcov", "neg_log_lik", "formula_parts", "data", "weights", "reml", "opt_details", "tmb_object", "tmb_data", "call", "optimizer" ) ) # See design/SAS/sas_log_simple_reml.txt for the source of numbers. expect_equal(2 * result$neg_log_lik, 3700.94648570) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3509, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.8338, tolerance = 1e-4) result_cov_tri <- result$cov[lower.tri(result$cov)] expected_cov_tri <- c(49.8999, 2.7459, -40.4566, 4.9722, -8.5335, 23.0555) expect_equal(result_cov_tri, expected_cov_tri, tolerance = 1e-3) }) ## ante-dependence ---- ### homogeneous ---- test_that("fit_mmrm works with ad covariance structure and ML", { formula <- FEV1 ~ ad(AVISIT | USUBJID) data <- fev_data result <- expect_silent(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/mmrm_ad_ml.txt for the source of numbers. expect_equal(deviance(result), 3855.8794) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.5222, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 43.0574, tolerance = 1e-4) result_theta <- result$theta_est expected_theta <- c(2.2695640, 0.9147445, 0.7249571, 0.1897019) expect_equal(result_theta, expected_theta, tolerance = 1e-4) }) test_that("fit_mmrm works with ad covariance structure and REML", { formula <- FEV1 ~ ad(AVISIT | USUBJID) data <- fev_data result <- expect_silent(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/mmrm_ad_reml.txt for the source of numbers. expect_equal(deviance(result), 3855.3383) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.5236, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 43.0560, tolerance = 1e-4) result_theta <- result$theta_est expected_theta <- c(2.2713398, 0.9175433, 0.7303929, 0.1919114) expect_equal(result_theta, expected_theta, tolerance = 1e-4) }) ### heterogeneous ---- test_that("fit_mmrm works with adh covariance structure and ML", { formula <- FEV1 ~ adh(AVISIT | USUBJID) data <- fev_data result <- expect_silent(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_adh_ml.txt for the source of numbers. expect_equal(deviance(result), 3713.24501787) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3519, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.9019, tolerance = 1e-4) result_theta <- result$theta_est expected_theta <- c( log(sqrt(c(114.78, 44.5191, 26.7673, 158.33))), map_to_theta(c(0.7104, 0.09992, 0.3650)) ) expect_equal(result_theta, expected_theta, tolerance = 1e-4) }) test_that("fit_mmrm works with adh covariance structure and REML", { formula <- FEV1 ~ adh(AVISIT | USUBJID) data <- fev_data result <- expect_silent(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_adh_reml.txt for the source of numbers. expect_equal(deviance(result), 3713.49317786) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3529, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.9009, tolerance = 1e-4) result_theta <- result$theta_est expected_theta <- c( log(sqrt(c(114.89, 44.6313, 26.8922, 158.47))), map_to_theta(c(0.7106, 0.1033, 0.3657)) ) expect_equal(result_theta, expected_theta, tolerance = 1e-4) }) ### grouped heterogeneous---- test_that("fit_mmrm works with grouped adh covariance structure and ML", { formula <- FEV1 ~ adh(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_adh_ml.txt for the source of numbers. expect_equal(deviance(result), 3688.48731427) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3339, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.5284, tolerance = 1e-4) result_theta <- result$theta_est expected_theta <- c( log(sqrt(c(134.26, 51.4797, 19.8318, 114.89))), map_to_theta(c(0.8038, 0.02288, 0.1635)), log(sqrt(c(83.6194, 32.8289, 38.6672, 215.45))), map_to_theta(c(0.5169, 0.1976, 0.5654)) ) expect_equal(result_theta, expected_theta, tolerance = 1e-4) }) test_that("fit_mmrm works with grouped adh covariance structure and REML", { formula <- FEV1 ~ adh(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_adh_reml.txt for the source of numbers. expect_equal(deviance(result), 3688.84024388) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3349, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.5293, tolerance = 1e-4) result_theta <- result$theta_est expected_theta <- c( log(sqrt(c(134.41, 51.5930, 19.9393, 114.99))), map_to_theta(c(0.8039, 0.02646, 0.1643)), log(sqrt(c(83.7418, 32.9411, 38.7701, 215.53))), map_to_theta(c(0.5178, 0.2002, 0.5655)) ) expect_equal(result_theta, expected_theta, tolerance = 1e-4) }) ## toeplitz ---- ### homogeneous ---- test_that("fit_mmrm works with toep covariance structure and ML", { formula <- FEV1 ~ toep(AVISIT | USUBJID) data <- fev_data # We have seen transient NA/NaN function evaluation warnings here. result <- suppressWarnings(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_toep_ml.rtf for the source of numbers. expect_equal(deviance(result), 3857.00777313) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4669, tolerance = 1e-3) expect_equal(as.numeric(result$beta_est), 42.3717, tolerance = 1e-4) expected_var <- c(88.8193) cor_mat <- VarCorr(result) result_var <- as.numeric(diag(cor_mat)[1]) expect_equal(result_var, expected_var, tolerance = 1e-4) result_low_tri <- cor_mat[lower.tri(cor_mat)] expected_low_tri <- c(41.2525, 6.7009, -17.7604, 41.2525, 6.7009, 41.2525) expect_equal(result_low_tri, expected_low_tri, tolerance = 1e-4) }) test_that("fit_mmrm works with toep covariance structure and REML", { formula <- FEV1 ~ toep(AVISIT | USUBJID) data <- fev_data # We have seen transient NA/NaN function evaluation warnings here. result <- suppressWarnings(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_toep_reml.rtf for the source of numbers. expect_equal(deviance(result), 3856.68995273) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4684, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.3721, tolerance = 1e-4) expected_var <- c(89.0847) cor_mat <- VarCorr(result) result_var <- as.numeric(diag(cor_mat)[1]) expect_equal(result_var, expected_var, tolerance = 1e-4) result_low_tri <- cor_mat[lower.tri(cor_mat)] expected_low_tri <- c(41.5499, 6.9536, -17.6135, 41.5499, 6.9536, 41.5499) expect_equal(result_low_tri, expected_low_tri, tolerance = 1e-4) }) ### heterogeneous ---- test_that("fit_mmrm works with toeph covariance structure and ML", { formula <- FEV1 ~ toeph(AVISIT | USUBJID) data <- fev_data # We have seen transient NA/NaN function evaluation warnings here. result <- suppressWarnings(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_toeph_ml.txt for the source of numbers. expect_equal(deviance(result), 3722.29178558) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3812, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.6769, tolerance = 1e-4) expected_var <- c(90.3084, 38.4717, 35.9728, 175.50) cor_mat <- VarCorr(result) result_var <- as.numeric(diag(cor_mat)) expect_equal(result_var, expected_var, tolerance = 1e-4) result_low_tri <- cor_mat[lower.tri(cor_mat)] expected_low_tri <- c(25.2231, 2.4950, -39.4085, 15.9192, 3.5969, 34.0009) expect_equal(result_low_tri, expected_low_tri, tolerance = 1e-4) }) test_that("fit_mmrm works with toeph covariance structure and REML", { formula <- FEV1 ~ toeph(AVISIT | USUBJID) data <- fev_data # We have seen transient NA/NaN function evaluation warnings here. result <- suppressWarnings(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_toeph_reml.txt for the source of numbers. expect_equal(deviance(result), 3722.38018329) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3822, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.6726, tolerance = 1e-4) expected_var <- c(90.4041, 38.5927, 36.1518, 175.78) cor_mat <- VarCorr(result) result_var <- as.numeric(diag(cor_mat)) expect_equal(result_var, expected_var, tolerance = 1e-4) result_low_tri <- cor_mat[lower.tri(cor_mat)] expected_low_tri <- c(25.3713, 2.6128, -39.2746, 16.0440, 3.7643, 34.2409) expect_equal(result_low_tri, expected_low_tri, tolerance = 1e-4) }) ### grouped heterogeneous ---- test_that("fit_mmrm works with grouped toeph covariance structure and ML", { formula <- FEV1 ~ toeph(AVISIT | ARMCD / USUBJID) data <- fev_data # We have seen transient NA/NaN function evaluation warnings here. result <- suppressWarnings(fit_mmrm(formula, data, weights = rep(1, nrow(fev_data)), reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_toeph_ml.txt for the source of numbers. expect_equal(deviance(result), 3704.27043196) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3553, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.4792, tolerance = 1e-4) expected_var <- c(104.38, 40.7267, 24.9011, 127.01) cor_mat <- VarCorr(result) # PBO covariance matrix. expected_pbo_var <- c(104.38, 40.7267, 24.9011, 127.01) result_pbo_var <- as.numeric(diag(cor_mat$PBO)) expect_equal(result_pbo_var, expected_pbo_var, tolerance = 1e-3) expected_pbo_rho <- c(0.3296, -0.1196, -0.3575) result_pbo_rho <- map_to_cor(result$theta_est[5:7]) expect_equal(result_pbo_rho, expected_pbo_rho, tolerance = 1e-2) # TRT covariance matrix. expected_trt_var <- c(74.4963, 34.1465, 49.7033, 220.01) result_trt_var <- as.numeric(diag(cor_mat$TRT)) expect_equal(result_trt_var, expected_trt_var, tolerance = 1e-4) expected_trt_rho <- c(0.4663, 0.1525, -0.2756) result_trt_rho <- map_to_cor(result$theta_est[12:14]) expect_equal(result_trt_rho, expected_trt_rho, tolerance = 1e-2) }) test_that("fit_mmrm works with grouped toeph covariance structure and REML", { formula <- FEV1 ~ toeph(AVISIT | ARMCD / USUBJID) data <- fev_data # We have seen transient NA/NaN function evaluation warnings here. result <- suppressWarnings(fit_mmrm(formula, data, weights = rep(1, nrow(fev_data)), reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_toeph_reml.txt for the source of numbers. expect_equal(deviance(result), 3704.49921127) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3563, tolerance = 1e-3) expect_equal(as.numeric(result$beta_est), 41.4766, tolerance = 1e-4) cor_mat <- VarCorr(result) # PBO covariance matrix. expected_pbo_var <- c(104.43, 40.8152, 25.0541, 127.27) result_pbo_var <- as.numeric(diag(cor_mat$PBO)) expect_equal(result_pbo_var, expected_pbo_var, tolerance = 1e-3) expected_pbo_rho <- c(0.3315, -0.1172, -0.3567) result_pbo_rho <- map_to_cor(result$theta_est[5:7]) expect_equal(result_pbo_rho, expected_pbo_rho, tolerance = 1e-2) # TRT covariance matrix. expected_trt_var <- c(74.6153, 34.2766, 49.8505, 220.20) result_trt_var <- as.numeric(diag(cor_mat$TRT)) expect_equal(result_trt_var, expected_trt_var, tolerance = 1e-3) expected_trt_rho <- c(0.4677, 0.1540, -0.2741) result_trt_rho <- map_to_cor(result$theta_est[12:14]) expect_equal(result_trt_rho, expected_trt_rho, tolerance = 1e-2) }) ## autoregressive ---- ### homogeneous ---- test_that("fit_mmrm works with ar1 covariance structure and ML", { formula <- FEV1 ~ ar1(AVISIT | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_ar1_ml.txt for the source of numbers. expect_equal(deviance(result), 3875.95352406) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.5000, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.3252, tolerance = 1e-4) result_sd <- exp(result$theta_est[1]) expected_sd <- sqrt(88.7088) expect_equal(result_sd, expected_sd, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[2]) expected_rho <- 0.4249 expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) test_that("fit_mmrm works with ar1 covariance structure and REML", { formula <- FEV1 ~ ar1(AVISIT | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_ar1_reml.txt for the source of numbers. expect_equal(deviance(result), 3875.49945459) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.5013, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.3255, tolerance = 1e-4) result_sd <- exp(result$theta_est[1]) expected_sd <- sqrt(88.9866) expect_equal(result_sd, expected_sd, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[2]) expected_rho <- 0.4272 expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) ### heterogeneous ---- test_that("fit_mmrm works with ar1h covariance structure and ML", { formula <- FEV1 ~ ar1h(AVISIT | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_ar1h_ml.txt for the source of numbers. expect_equal(deviance(result), 3739.94416707) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3936, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.7017, tolerance = 1e-4) result_sds <- exp(result$theta_est[1:4]) expected_sds <- sqrt(c(92.2283, 38.3927, 35.0194, 176.08)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[5]) expected_rho <- 0.4113 expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) test_that("fit_mmrm works with ar1h covariance structure and REML", { formula <- FEV1 ~ ar1h(AVISIT | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_ar1h_reml.txt for the source of numbers. expect_equal(deviance(result), 3739.96835012) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3947, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.6955, tolerance = 1e-4) result_sds <- exp(result$theta_est[1:4]) expected_sds <- sqrt(c(92.3009, 38.5178, 35.2148, 176.37)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[5]) expected_rho <- 0.4130 expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) ### grouped homogeneous---- test_that("fit_mmrm works with grouped ar1 covariance structure and ML", { formula <- FEV1 ~ ar1(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_ar1h_ml.txt for the source of numbers. expect_equal(deviance(result), 3873.08507919) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4947, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.9560, tolerance = 1e-4) result_sd <- exp(result$theta_est[c(1, 3)]) expected_sd <- sqrt(c(78.3954, 100.51)) expect_equal(result_sd, expected_sd, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(2, 4)]) expected_rho <- c(0.3667, 0.4813) expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) test_that("fit_mmrm works with grouped ar1 covariance structure and REML", { formula <- FEV1 ~ ar1(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_ar1h_reml.txt for the source of numbers. expect_equal(deviance(result), 3872.65212395) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4960, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.9576, tolerance = 1e-4) result_sd <- exp(result$theta_est[c(1, 3)]) expected_sd <- sqrt(c(78.6615, 100.79)) expect_equal(result_sd, expected_sd, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(2, 4)]) expected_rho <- c(0.3693, 0.4831) expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) ### grouped heterogeneous---- test_that("fit_mmrm works with grouped ar1h covariance structure and ML", { formula <- FEV1 ~ ar1h(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_ar1h_ml.txt for the source of numbers. expect_equal(deviance(result), 3724.22021102) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3713, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.7161, tolerance = 1e-4) result_sds <- exp(result$theta_est[c(1:4, 6:9)]) expected_sds <- sqrt(c(109.37, 42.7363, 23.3590, 128.21, 76.5687, 34.2447, 46.8888, 219.43)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(5, 10)]) expected_rho <- c(0.3160, 0.4583) expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) test_that("fit_mmrm works with grouped ar1h covariance structure and REML", { formula <- FEV1 ~ ar1h(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_ar1h_reml.txt for the source of numbers. expect_equal(deviance(result), 3724.36099760) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.37233778, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.7104, tolerance = 1e-4) result_sds <- exp(result$theta_est[c(1:4, 6:9)]) expected_sds <- sqrt( c( 109.37350823, 42.81343590, 23.52559796, 128.45926562, 76.67358836, 34.38779235, 47.06871404, 219.70601878 ) ) expect_equal(result_sds, expected_sds, tolerance = 1e-3) result_rho <- map_to_cor(result$theta_est[c(5, 10)]) expected_rho <- c(0.3179, 0.4599) expect_equal(result_rho, expected_rho, tolerance = 1e-4) }) ## compound symmetry ---- ### homogeneous ---- test_that("fit_mmrm works with cs covariance structure and ML", { formula <- FEV1 ~ cs(AVISIT | USUBJID) # We can get transient warnings here. result <- suppressWarnings(fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_cs_ml.txt for the source of numbers. expect_equal(deviance(result), 3918.12214544) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4273, tolerance = 1e-3) expect_equal(as.numeric(result$beta_est), 42.2897, tolerance = 1e-4) result_sd <- exp(result$theta_est[1]) expected_sd <- sqrt(86.7143) expect_equal(result_sd, expected_sd, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[2]) expected_rho <- 0.06596 expect_equal(result_rho, expected_rho, tolerance = 1e-2) }) test_that("fit_mmrm works with cs covariance structure and REML", { formula <- FEV1 ~ cs(AVISIT | USUBJID) # We can get transient warnings here. result <- suppressWarnings(fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_cs_reml.txt for the source of numbers. expect_equal(deviance(result), 3917.98183508) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4285, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.2896, tolerance = 1e-4) result_sd <- exp(result$theta_est[1]) expected_sd <- sqrt(86.8968) expect_equal(result_sd, expected_sd, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[2]) expected_rho <- 0.06783 expect_equal(result_rho, expected_rho, tolerance = 1e-2) }) ### heterogeneous ---- test_that("fit_mmrm works with csh covariance structure and ML", { formula <- FEV1 ~ csh(AVISIT | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_csh_ml.txt for the source of numbers. expect_equal(deviance(result), 3784.63158043) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3566, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.0018, tolerance = 1e-4) result_sds <- exp(result$theta_est[1:4]) expected_sds <- sqrt(c(104.54, 38.5253, 31.1656, 178.62)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[5]) expected_rho <- 0.1566 expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) test_that("fit_mmrm works with csh covariance structure and REML", { formula <- FEV1 ~ csh(AVISIT | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_csh_reml.txt for the source of numbers. expect_equal(deviance(result), 3784.85341599) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3575, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.9964, tolerance = 1e-4) result_sds <- exp(result$theta_est[1:4]) expected_sds <- sqrt(c(104.61, 38.6137, 31.3143, 178.91)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[5]) expected_rho <- 0.1582 expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) ## weighted mmrm ---- test_that("fit_mmrm works with weights and ML", { formula <- FEV1 ~ adh(AVISIT | USUBJID) data <- fev_data weights <- fev_data$WEIGHT result <- expect_silent(fit_mmrm(formula, data, weights, reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_weighted_mmrm_ml.rtf for the source of numbers. expect_equal(deviance(result), 3800.20590355) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3477, tolerance = 1e-3) expect_equal(as.numeric(result$beta_est), 42.3381, tolerance = 1e-4) result_theta <- result$theta_est expected_theta <- c( log(sqrt(c(59.9705, 19.3098, 16.0271, 83.0741))), map_to_theta(c(0.6200, 0.08924, 0.3638)) ) expect_equal(result_theta, expected_theta, tolerance = 1e-4) }) test_that("fit_mmrm works with weights and REML", { formula <- FEV1 ~ adh(AVISIT | USUBJID) data <- fev_data weights <- fev_data$WEIGHT result <- expect_silent(fit_mmrm(formula, data, weights, reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_weighted_mmrm_reml.rtf for the source of numbers. expect_equal(deviance(result), 3800.47793975) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3487, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 42.3354, tolerance = 1e-4) result_theta <- result$theta_est expected_theta <- c( log(sqrt(c(60.0152, 19.3624, 16.0953, 83.1570))), map_to_theta(c(0.6202, 0.09264, 0.3646)) ) expect_equal(result_theta, expected_theta, tolerance = 1e-4) }) ### grouped homogeneous ---- test_that("fit_mmrm works with group cs covariance structure and ML", { formula <- FEV1 ~ cs(AVISIT | ARMCD / USUBJID) # We can get transient warnings here. result <- suppressWarnings(fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_cs_ml.txt for the source of numbers. expect_equal(deviance(result), 3915.54243738) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4236, tolerance = 1e-3) expect_equal(as.numeric(result$beta_est), 41.9714, tolerance = 1e-4) result_sd <- exp(result$theta_est[c(1, 3)]) expected_sd <- sqrt(c(77.9218, 96.1798)) expect_equal(result_sd, expected_sd, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(2, 4)]) expected_rho <- c(3.0393, 8.8558) / c(77.9218, 96.1798) expect_equal(result_rho, expected_rho, tolerance = 1e-2) }) test_that("fit_mmrm works with cs covariance structure and REML", { formula <- FEV1 ~ cs(AVISIT | ARMCD / USUBJID) # We can get transient warnings here. result <- suppressWarnings(fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_cs_reml.txt for the source of numbers. expect_equal(deviance(result), 3915.41985780) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4247, tolerance = 1e-3) expect_equal(as.numeric(result$beta_est), 41.9734, tolerance = 1e-4) result_sd <- exp(result$theta_est[c(1, 3)]) expected_sd <- sqrt(c(78.1081, 96.3502)) expect_equal(result_sd, expected_sd, tolerance = 1e-3) result_rho <- map_to_cor(result$theta_est[c(2, 4)]) expected_rho <- c(3.2130, 9.0248) / c(78.1081, 96.3502) expect_equal(result_rho, expected_rho, tolerance = 1e-2) }) ### grouped heterogeneous---- test_that("fit_mmrm works with grouped csh covariance structure and ML", { formula <- FEV1 ~ csh(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_csh_ml.txt for the source of numbers. expect_equal(deviance(result), 3764.21336404) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3363, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.8492, tolerance = 1e-4) result_sds <- exp(result$theta_est[c(1:4, 6:9)]) expected_sds <- sqrt(c(122.6, 45.101, 21.2903, 125.92, 82.6, 31.2298, 44.5561, 234.25)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(5, 10)]) expected_rho <- c(0.07915, 0.2082) expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) test_that("fit_mmrm works with grouped csh covariance structure and REML", { formula <- FEV1 ~ csh(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_csh_reml.txt for the source of numbers. expect_equal(deviance(result), 3764.55218946) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3372, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.8458, tolerance = 1e-4) result_sds <- exp(result$theta_est[c(1:4, 6:9)]) expected_sds <- sqrt(c(122.64, 45.1705, 21.411, 126.14, 82.7175, 31.3308, 44.6841, 234.52)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(5, 10)]) expected_rho <- c(0.08074, 0.2097) expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) ### grouped homogeneous ---- test_that("fit_mmrm works with group cs covariance structure and ML", { formula <- FEV1 ~ cs(AVISIT | ARMCD / USUBJID) # We can get transient warnings here. result <- suppressWarnings(fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_cs_ml.txt for the source of numbers. expect_equal(deviance(result), 3915.54243738) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4236, tolerance = 1e-3) expect_equal(as.numeric(result$beta_est), 41.9714, tolerance = 1e-4) result_sd <- exp(result$theta_est[c(1, 3)]) expected_sd <- sqrt(c(77.9218, 96.1798)) expect_equal(result_sd, expected_sd, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(2, 4)]) expected_rho <- c(3.0393, 8.8558) / c(77.9218, 96.1798) expect_equal(result_rho, expected_rho, tolerance = 1e-2) }) test_that("fit_mmrm works with cs covariance structure and REML", { formula <- FEV1 ~ cs(AVISIT | ARMCD / USUBJID) # We can get transient warnings here. result <- suppressWarnings(fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE)) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_cs_reml.txt for the source of numbers. expect_equal(deviance(result), 3915.41985780) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.4247, tolerance = 1e-3) expect_equal(as.numeric(result$beta_est), 41.9734, tolerance = 1e-4) result_sd <- exp(result$theta_est[c(1, 3)]) expected_sd <- sqrt(c(78.1081, 96.3502)) expect_equal(result_sd, expected_sd, tolerance = 1e-3) result_rho <- map_to_cor(result$theta_est[c(2, 4)]) expected_rho <- c(3.2130, 9.0248) / c(78.1081, 96.3502) expect_equal(result_rho, expected_rho, tolerance = 1e-2) }) ### grouped heterogeneous---- test_that("fit_mmrm works with grouped csh covariance structure and ML", { formula <- FEV1 ~ csh(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_csh_ml.txt for the source of numbers. expect_equal(deviance(result), 3764.21336404) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3363, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.8492, tolerance = 1e-4) result_sds <- exp(result$theta_est[c(1:4, 6:9)]) expected_sds <- sqrt(c(122.6, 45.101, 21.2903, 125.92, 82.6, 31.2298, 44.5561, 234.25)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(5, 10)]) expected_rho <- c(0.07915, 0.2082) expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) test_that("fit_mmrm works with grouped csh covariance structure and REML", { formula <- FEV1 ~ csh(AVISIT | ARMCD / USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_group_csh_reml.txt for the source of numbers. expect_equal(deviance(result), 3764.55218946) expect_equal(sqrt(result$beta_vcov[1, 1]), 0.3372, tolerance = 1e-4) expect_equal(as.numeric(result$beta_est), 41.8458, tolerance = 1e-4) result_sds <- exp(result$theta_est[c(1:4, 6:9)]) expected_sds <- sqrt(c(122.64, 45.1705, 21.411, 126.14, 82.7175, 31.3308, 44.6841, 234.52)) expect_equal(result_sds, expected_sds, tolerance = 1e-4) result_rho <- map_to_cor(result$theta_est[c(5, 10)]) expected_rho <- c(0.08074, 0.2097) expect_equal(result_rho, expected_rho, tolerance = 1e-3) }) ## spatial exponential ---- test_that("fit_mmrm works with sp_exp covariance structure and ML", { formula <- FEV1 ~ sp_exp(VISITN | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_sp_exp_ml.txt for the source of numbers. expect_equal(deviance(result), 3875.95353357) expect_equal(as.numeric(result$beta_est[1]), 42.3252, tolerance = 1e-4) expect_equal(plogis(result$theta_est[2])^2, 0.1805, tolerance = 1e-3) expect_equal(exp(result$theta_est[1]), 88.7005, tolerance = 1e-3) }) test_that("fit_mmrm works with sp_exp covariance structure and ML(2-dimension)", { formula <- FEV1 ~ sp_exp(VISITN, VISITN2 | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_sp_exp2_ml.txt for the source of numbers. expect_equal(deviance(result), 3894.94943409) expect_equal(as.numeric(result$beta_est[1]), 42.2203, tolerance = 1e-4) expect_equal(plogis(result$theta_est[2])^dist(fev_data[c(2, 4), c("VISITN", "VISITN2")])[1], 0.1375, tolerance = 1e-3) expect_equal(exp(result$theta_est[1]), 87.6472, tolerance = 1e-3) }) test_that("fit_mmrm works with sp_exp covariance structure and REML", { formula <- FEV1 ~ sp_exp(VISITN | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_sp_exp_reml.txt for the source of numbers. expect_equal(deviance(result), 3875.49946734) expect_equal(as.numeric(result$beta_est[1]), 42.3254, tolerance = 1e-4) expect_equal(plogis(result$theta_est[2])^2, 0.1823, tolerance = 1e-3) expect_equal(exp(result$theta_est[1]), 88.9768, tolerance = 1e-3) }) test_that("fit_mmrm works with sp_exp covariance structure and REML(2-dimension)", { formula <- FEV1 ~ sp_exp(VISITN, VISITN2 | USUBJID) result <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE) expect_class(result, "mmrm_tmb") # See design/SAS/sas_sp_exp2_reml.txt for the source of numbers. expect_equal(deviance(result), 3894.60123182) expect_equal(as.numeric(result$beta_est[1]), 42.2202, tolerance = 1e-4) expect_equal(plogis(result$theta_est[2])^dist(fev_data[c(2, 4), c("VISITN", "VISITN2")])[1], 0.1393, tolerance = 1e-3) expect_equal(exp(result$theta_est[1]), 87.8870, tolerance = 1e-3) }) ## misc ---- test_that("fit_mmrm also works with character ID variable", { formula <- FEV1 ~ us(AVISIT | USUBJID) data <- fev_data data$USUBJID <- as.character(data$USUBJID) # nolint result <- expect_silent(fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data)), reml = TRUE)) expected <- expect_silent(fit_mmrm(formula, data, weights = rep(1, nrow(data)), reml = TRUE)) expect_identical(result$beta_est, expected$beta_est) }) test_that("fit_mmrm saves data name in call element as expected", { formula <- FEV1 ~ us(AVISIT | USUBJID) fit <- fit_mmrm(formula, fev_data, weights = rep(1, nrow(fev_data))) saved_call <- fit$call expect_class(saved_call, "call") expect_identical(saved_call$data, as.name("fev_data")) }) test_that("fit_mmrm works even when time point variable has unused factor levels", { tmp_data <- fev_data tmp_data$AVISIT <- factor(tmp_data$AVISIT, levels = c("SCREENING", "VIS1", "VIS2", "VIS3", "VIS4")) expect_message( result <- fit_mmrm( FEV1 ~ FEV1_BL + RACE + us(AVISIT | USUBJID), data = tmp_data, weights = rep(1, nrow(tmp_data)) ), "In AVISIT there are dropped visits: SCREENING" ) expect_class(result, "mmrm_tmb") expect_identical( rownames(VarCorr(result)), c("VIS1", "VIS2", "VIS3", "VIS4") ) }) test_that("fit_mmrm works if we keep the unused factor levels for specific covariance structure", { tmp_data <- fev_data tmp_data$AVISIT <- factor(tmp_data$AVISIT, levels = c("SCREENING", "VIS1", "VIS2", "VIS3", "VIS4")) expect_silent(result <- fit_mmrm( FEV1 ~ FEV1_BL + RACE + ar1(AVISIT | USUBJID), data = tmp_data, weights = rep(1, nrow(tmp_data)), control = mmrm_control(drop_visit_levels = FALSE) )) expect_class(result, "mmrm_tmb") expect_identical( rownames(VarCorr(result)), c("SCREENING", "VIS1", "VIS2", "VIS3", "VIS4") ) }) test_that("fit_mmrm warns if we keep the unused factor levels for unstructured covariance", { tmp_data <- fev_data tmp_data$AVISIT <- factor(tmp_data$AVISIT, levels = c("SCREENING", "VIS1", "VIS2", "VIS3", "VIS4")) expect_warning( result <- fit_mmrm( FEV1 ~ FEV1_BL + RACE + us(AVISIT | USUBJID), data = tmp_data, weights = rep(1, nrow(tmp_data)), control = mmrm_control(drop_visit_levels = FALSE) ), "Model convergence problem: hessian is singular, theta_vcov not available" ) expect_class(result, "mmrm_tmb") expect_identical( rownames(VarCorr(result)), c("SCREENING", "VIS1", "VIS2", "VIS3", "VIS4") ) }) test_that("fit_mmrm works with below full rank original design matrix by default", { formula <- FEV1 ~ RACE + SEX + SEX2 + ARMCD * AVISIT + us(AVISIT | USUBJID) dat <- fev_data dat$SEX2 <- dat$SEX # nolint result <- expect_silent(fit_mmrm(formula, dat, weights = rep(1, nrow(dat)))) expect_match(names(which(result$tmb_data$x_cols_aliased)), "SEX2") }) test_that("fit_mmrm throws informative error for non-spatial cov with non-factor", { tmp_data <- fev_data levels(tmp_data$AVISIT) <- c(1, 2, 3, 4) tmp_data$AVISIT <- as.numeric(tmp_data$AVISIT) expect_error( fit_mmrm( FEV1 ~ FEV1_BL + RACE + us(AVISIT | USUBJID), data = tmp_data, weights = rep(1, nrow(tmp_data)) ), "Time variable must be a factor for non-spatial covariance structures" ) }) test_that("get_covariance_lower_chol errors when an invalid covariance type is used", { formula <- FEV1 ~ RACE + us(AVISIT | USUBJID) formula_parts <- h_mmrm_tmb_formula_parts(formula) tmb_data <- h_mmrm_tmb_data( formula_parts, fev_data, weights = rep(1, nrow(fev_data)), reml = FALSE, singular = "error", drop_visit_levels = TRUE ) tmb_parameters <- h_mmrm_tmb_parameters(formula_parts, tmb_data, start = NULL) tmb_data$cov_type <- "gaaah" expect_error( TMB::MakeADFun( data = tmb_data, parameters = tmb_parameters, hessian = TRUE, DLL = "mmrm", silent = TRUE ), "Unknown covariance type 'gaaah'" ) tmb_data$is_spatial <- TRUE expect_error( TMB::MakeADFun( data = tmb_data, parameters = tmb_parameters, hessian = TRUE, DLL = "mmrm", silent = TRUE ), "Unknown covariance type 'gaaah'" ) })