# fit_single_optimizer ---- test_that("fit_single_optimizer works as expected with defaults", { dat <- fev_data form <- FEV1 ~ ARMCD * RACE + us(AVISIT | USUBJID) result <- fit_single_optimizer( formula = form, data = dat, weights = rep(1, nrow(dat)) ) expect_identical(class(result), c("mmrm_fit", "mmrm_tmb")) expect_identical(attr(result, "optimizer"), "L-BFGS-B") expect_identical(attr(result, "messages"), NULL) expect_identical(attr(result, "warnings"), NULL) expect_true(attr(result, "converged")) }) test_that("fit_single_optimizer works as expected with nlminb optimizer but no starting values", { dat <- fev_data form <- FEV1 ~ SEX + us(AVISIT | USUBJID) result <- fit_single_optimizer( formula = form, data = dat, weights = rep(1, nrow(dat)), optimizer = "nlminb" ) expect_identical(class(result), c("mmrm_fit", "mmrm_tmb")) expect_identical(attr(result, "optimizer"), "nlminb") expect_identical(attr(result, "messages"), NULL) expect_identical(attr(result, "warnings"), NULL) expect_true(attr(result, "converged")) }) test_that("fit_single_optimizer works as expected with optimizer inputted but no starting values", { dat <- fev_data form <- FEV1 ~ SEX + us(AVISIT | USUBJID) result <- fit_single_optimizer( formula = form, data = dat, weights = rep(1, nrow(dat)), optimizer = "BFGS" ) expect_identical(class(result), c("mmrm_fit", "mmrm_tmb")) expect_identical(attr(result, "optimizer"), "BFGS") expect_identical(attr(result, "messages"), NULL) expect_identical(attr(result, "warnings"), NULL) expect_true(attr(result, "converged")) }) test_that("fit_single_optimizer works as expected with starting values and optimizer inputted", { dat <- fev_data form <- FEV1 ~ RACE + ARMCD + us(AVISIT | USUBJID) result <- fit_single_optimizer( formula = form, data = dat, weights = rep(1, nrow(dat)), optimizer = "BFGS", start = 1:10 ) expect_identical(class(result), c("mmrm_fit", "mmrm_tmb")) expect_identical(attr(result, "optimizer"), "BFGS") expect_identical(attr(result, "messages"), NULL) expect_identical(attr(result, "warnings"), NULL) expect_true(attr(result, "converged")) }) test_that("fit_single_optimizer gives error messages", { formula <- FEV1 ~ bla expect_error( fit_mmrm(formula, fev_data), paste( "Covariance structure must be specified in formula.", "Possible covariance structures include:", "us, toep, toeph, ar1, ar1h, ad, adh, cs, csh, sp_exp" ), fixed = TRUE ) expect_error( fit_single_optimizer(formula, fev_data, weights = rep(1, nrow(fev_data))), paste( "Covariance structure must be specified in formula.", "Possible covariance structures include:", "us, toep, toeph, ar1, ar1h, ad, adh, cs, csh" ), fixed = TRUE ) }) test_that("fit_single_optimizer is stable to extreme scaling with defaults", { # We generate an example data set with two variables on very different scales. # After rescaling to sd = 1 both would have unit effect on the outcome. scaling_factor <- 1e6 set.seed(42L) id <- factor(rep(1:50, each = 2)) visit <- factor(rep(c(1, 2), 50)) x_large <- rep(rnorm(50, sd = sqrt(scaling_factor)), each = 2) x_small <- rep(rnorm(50, sd = 1 / sqrt(scaling_factor)), each = 2) y <- x_large / sqrt(scaling_factor) + sqrt(scaling_factor) * x_small + rnorm(100, sd = .5) # add some noise dat <- data.frame(id = id, x_large = x_large, x_small = x_small, visit = visit, y = y) result <- fit_single_optimizer( formula = y ~ x_large + x_small + us(visit | id), data = dat, weights = rep(1, nrow(dat)) ) # Compute relative error on both coefficients and check that it is small. beta_est <- coef(result)[c("x_large", "x_small")] rel_err <- c(beta_est - c(1 / sqrt(scaling_factor), sqrt(scaling_factor))) / c(1 / sqrt(scaling_factor), sqrt(scaling_factor)) expect_true(attr(result, "converged")) expect_true(all(abs(rel_err) <= 0.05)) }) test_that("fit_single_optimizer catches convergence warning as expected", { dat <- data.frame( FEV1 = c(1, 2, 3, 4, 5), AVISIT = factor(c("V1", "V1", "V2", "V3", "V4")), USUBJID = c("A", "B", "A", "C", "A") ) vars <- list( response = "FEV1", id = "USUBJID", visit = "AVISIT" ) result <- expect_silent(fit_single_optimizer( formula = FEV1 ~ AVISIT + us(AVISIT | USUBJID), data = dat, weights = rep(1, nrow(dat)), optimizer = "L-BFGS-B" )) expect_match(attr(result, "warnings"), regexp = "Model convergence problem") expect_false(attr(result, "converged")) expect_class(component(result, "theta_vcov"), "try-error") }) test_that("fit_single_optimizer deals correctly with unobserved visits message", { data_unobs <- fev_data[fev_data$AVISIT != "VIS3", ] result <- expect_silent(fit_single_optimizer( formula = FEV1 ~ RACE + ad(AVISIT | USUBJID), data = data_unobs, weights = rep(1, nrow(data_unobs)) )) expect_identical(attr(result, "messages"), "In AVISIT there are dropped visits: VIS3") expect_true(attr(result, "converged")) }) test_that("fit_single_optimizer fails if formula contains `.`", { expect_error( fit_single_optimizer(FEV1 ~ ., data = fev_data, weights = rep(1, 800)), "`.` is not allowed in mmrm models!" ) }) test_that("fit_single_optimizer signals non-convergence but does not fail for finite values error", { fake_optimizer <- function(par, fun, grad, ...) { stop("L-BFGS-B needs finite values of 'fn'") } result <- expect_silent(fit_single_optimizer( formula = FEV1 ~ AVISIT + us(AVISIT | USUBJID), data = fev_data, weights = rep(1, nrow(fev_data)), control = mmrm_control( optimizer_fun = fake_optimizer ) )) expect_false(attr(result, "converged")) expect_identical(attr(result, "divergence"), "L-BFGS-B needs finite values of 'fn'") }) test_that("fit_single_optimizer signals non-convergence but does not fail for NA/NaN Hessian error", { fake_optimizer <- function(par, fun, grad, ...) { stop("NA/NaN Hessian evaluation") } result <- expect_silent(fit_single_optimizer( formula = FEV1 ~ AVISIT + us(AVISIT | USUBJID), data = fev_data, weights = rep(1, nrow(fev_data)), control = mmrm_control( optimizer_fun = fake_optimizer ) )) expect_false(attr(result, "converged")) expect_identical(attr(result, "divergence"), "NA/NaN Hessian evaluation") }) # h_summarize_all_fits ---- test_that("h_summarize_all_fits works as expected", { mod_fit <- fit_single_optimizer( formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID), data = fev_data, weights = rep(1, nrow(fev_data)), optimizer = "nlminb" ) mod_fit2 <- fit_single_optimizer( formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID), data = fev_data, weights = rep(1, nrow(fev_data)), optimizer = "L-BFGS-B" ) all_fits <- list(mod_fit, mod_fit2) result <- expect_silent(h_summarize_all_fits(all_fits)) # NOTE: # Test currently fails on R-devel on Fedora with clang for the first optimizer # mmrm v0.1.5 @ r-devel-linux-x86_64-fedora-clang # `actual$log_liks`: -2155.280410081641 -1693.224938122514 # `expected$log_liks`: -1693.224935585730 -1693.224938122510 # # As this failure only appears on R-devel on Fedora with clang, we are # temporarily skipping this test on CRAN until we can reproduce the behavior. skip_on_cran() expected <- list( warnings = list(NULL, NULL), messages = list(NULL, NULL), log_liks = c(-1693.22493558573, -1693.22493812251), converged = c(TRUE, TRUE) ) expect_equal(result, expected) }) test_that("h_summarize_all_fits works when some list elements are try-error objects", { mod_fit <- get_mmrm() mod_fit2 <- try(stop("bla"), silent = TRUE) mod_fit3 <- get_mmrm() all_fits <- list(mod_fit, mod_fit2, mod_fit3) result <- expect_silent(h_summarize_all_fits(all_fits)) expected <- list( warnings = list(NULL, "Error in try(stop(\"bla\"), silent = TRUE) : bla\n", NULL), messages = list(NULL, NULL, NULL), log_liks = c(-1693.225, NA, -1693.225), converged = c(TRUE, FALSE, TRUE) ) expect_equal(result, expected, tolerance = 1e-3) }) # refit_multiple_optimizers ---- test_that("refit_multiple_optimizers works as expected with default arguments", { fit <- fit_single_optimizer( formula = FEV1 ~ ar1(AVISIT | USUBJID), data = fev_data, weights = rep(1, nrow(fev_data)), optimizer = "nlminb" ) assert_true(attr(fit, "converged")) # Mock here that it did not converge. attr(fit, "converged") <- FALSE fit$neg_log_lik <- fit$neg_log_lik + 10 result <- expect_silent(refit_multiple_optimizers(fit = fit, optimizer = "nlminb")) expect_class(result, "mmrm_fit") expect_true(attr(result, "converged")) expect_identical("nlminb", attr(result, "optimizer")) expect_true(logLik(result) > logLik(fit)) }) test_that("refit_multiple_optimizers works with parallel computations and selected optimizers", { skip_on_cran() skip_if(!isTRUE(parallel::detectCores() > 1), "unable to detect more than one core") has_parallelly <- length(find.package("parallelly", quiet = TRUE)) > 0 n_cores <- if (has_parallelly) parallelly::availableCores(omit = 1) else 2 fit <- fit_single_optimizer( formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID), data = fev_data, weights = rep(1, nrow(fev_data)), optimizer = "nlminb" ) # Mock here that it did not converge. attr(fit, "converged") <- FALSE fit$neg_log_lik <- fit$neg_log_lik + 10 result <- expect_silent(refit_multiple_optimizers( fit = fit, n_cores = n_cores, optimizer = c("BFGS", "CG") )) expect_class(result, "mmrm_fit") expect_true(attr(result, "converged")) expect_subset(attr(result, "optimizer"), choices = c("BFGS", "CG")) expect_true(logLik(result) > logLik(fit)) }) # mmrm ---- ## convergence ---- test_that("mmrm works as expected for unstructured", { formula <- FEV1 ~ us(AVISIT | USUBJID) result <- expect_silent(mmrm(formula, fev_data, reml = FALSE)) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_list(result$jac_list, types = "matrix") expect_class(result$call, "call") expect_false(result$reml) }) test_that("mmrm works as expected for antedependence", { formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + ad(AVISIT | USUBJID) result <- expect_silent(mmrm(formula, fev_data, reml = TRUE)) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_list(result$jac_list, types = "matrix") expect_class(result$call, "call") expect_true(result$reml) }) test_that("mmrm works as expected for toeplitz", { formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + toep(AVISIT | USUBJID) result <- expect_silent(mmrm(formula, fev_data, reml = TRUE)) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_list(result$jac_list, types = "matrix") expect_class(result$call, "call") expect_true(result$reml) }) ## general ---- test_that("mmrm falls back to other optimizers if default does not work", { formula <- FEV1 ~ ar1(AVISIT | USUBJID) # Chosen optimizer does not work. fake_optimizer <- function(par, fun, grad, ...) { stop("NA/NaN Hessian evaluation") } expect_error( expect_warning( mmrm(formula, fev_data, optimizer_fun = fake_optimizer), "Divergence with optimizer" ), "Consider trying multiple or different optimizers" ) # But another one works. # Note: We disable parallel processing here to comply with CRAN checks. expect_warning( result <- mmrm( formula, fev_data, n_cores = 1L, optimizer_fun = c(fake = fake_optimizer, h_get_optimizers("L-BFGS-B")) ), "Divergence with optimizer" ) expect_true(attr(result, "converged")) expect_true(identical(attr(result, "optimizer"), "L-BFGS-B")) }) test_that("mmrm fails if no optimizer works", { skip_on_ci() skip_on_cran() # We skip this test on CI and CRAN since it can be flaky on different platforms. formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) data_small <- fev_data[1:30, ] # Note: Here we are using parallel computations. expect_error( mmrm(formula, data_small, reml = FALSE), "No optimizer led to a successful model fit" ) }) test_that("mmrm works for rank deficient original design matrix by default", { formula <- FEV1 ~ SEX + SEX2 + ar1(AVISIT | USUBJID) dat <- fev_data dat$SEX2 <- dat$SEX # nolint result <- expect_silent(mmrm(formula, dat)) expect_true(attr(result, "converged")) expect_true(is.na(coef(result)["SEX2Female"])) }) test_that("mmrm works if data is not provided as argument", { result <- expect_silent( with( fev_data, mmrm(FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID)) ) ) expect_true(attr(result, "converged")) }) test_that("mmrm works if formula contains variables not in data", { set.seed(123L) y <- rnorm(800) wt <- exp(rnorm(800)) result <- expect_silent( mmrm(y ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID), weights = wt, data = fev_data) ) expect_true(attr(result, "converged")) }) test_that("mmrm works for specific small data example", { small_dat <- data.frame( FEV1 = c(1, 2, 3, 4, 5, 6), AVISIT = factor(c("V1", "V1", "V2", "V3", "V3", "V4")), USUBJID = c("A", "B", "A", "C", "D", "A") ) vars <- list( response = "FEV1", id = "USUBJID", visit = "AVISIT" ) fit <- expect_silent(mmrm( formula = FEV1 ~ AVISIT + ar1(AVISIT | USUBJID), data = small_dat )) expect_true(attr(fit, "converged")) }) test_that("mmrm works for custom optimizer", { fit <- mmrm( FEV1 ~ ARMCD + ar1(AVISIT | SEX / USUBJID), data = fev_data, reml = TRUE, optimizer_fun = silly_optimizer, optimizer_args = list(value_add = 2, message = "this is wrong"), start = c(1, 2, 3, 4), method = "Kenward-Roger" ) expect_identical(fit$theta_est, c(3, 4, 5, 6)) }) test_that("mmrm works for constructed control", { expect_silent(mmrm( FEV1 ~ ARMCD + ar1(AVISIT | SEX / USUBJID), data = fev_data, reml = TRUE, control = mmrm_control(optimizer = c("BFGS", "CG")) )) }) test_that("mmrm still works for deprecated 'automatic' optimizer", { expect_warning( mmrm( FEV1 ~ ARMCD + ar1(AVISIT | SEX / USUBJID), data = fev_data, reml = TRUE, optimizer = "automatic" ), "\"automatic\" optimizer was deprecated in mmrm 0.2.0.", fixed = TRUE ) }) test_that("mmrm works and gives message for data with unobserved visit levels", { data_unobs <- fev_data[fev_data$AVISIT != "VIS3", ] expect_message( result <- mmrm( FEV1 ~ RACE + ad(AVISIT | USUBJID), data = data_unobs ), "In AVISIT there are dropped visits: VIS3" ) data_dropped <- droplevels(data_unobs) expected <- mmrm( FEV1 ~ RACE + ad(AVISIT | USUBJID), data = data_dropped ) expect_identical(deviance(result), deviance(expected)) }) test_that("mmrm fails when using ... and control at the same time", { expect_error( mmrm( formula = FEV1 ~ us(AVISIT | USUBJID), data = fev_data, accept_singular = FALSE, control = mmrm_control(method = "Kenward-Roger") ), "Assertion on '!missing(control) && !missing(...)' failed", fixed = TRUE ) }) test_that("mmrm fails when using formula covariance with covariance argument", { expect_error( mmrm( formula = FEV1 ~ us(AVISIT | USUBJID), covariance = cov_struct("us", "AVISIT", "USUBJID"), data = fev_data, ), "Redundant covariance structure", fixed = TRUE ) }) test_that("mmrm works when using formula directly in covariance", { expect_silent( mmrm( formula = FEV1 ~ ARMCD, covariance = ~ us(AVISIT | USUBJID), data = fev_data, ) ) }) test_that("mmrm works for different na.actions", { na_action <- getOption("na.action") on.exit(options(na.action = na_action)) options(na.action = "na.omit") formula <- FEV1 ~ ARMCD + us(AVISIT | USUBJID) res1 <- expect_silent(mmrm(formula, fev_data)) expect_class(res1, "mmrm") options(na.action = "na.pass") expect_warning( res2 <- mmrm(formula, fev_data), "na.action is always set to `na.omit` for `mmrm` fit!" ) expect_class(res2, "mmrm") options(na.action = "na.fail") expect_warning( res3 <- mmrm(formula, fev_data), "na.action is always set to `na.omit` for `mmrm` fit!" ) expect_class(res3, "mmrm") options(na.action = "na.exclude") expect_warning( res4 <- mmrm(formula, fev_data), "na.action is always set to `na.omit` for `mmrm` fit!" ) expect_class(res4, "mmrm") }) test_that("mmrm still works for a model that only contains an interaction term", { expect_silent( mmrm( FEV1 ~ ARMCD:SEX + ar1(AVISIT | SEX / USUBJID), data = fev_data, reml = TRUE ) ) }) test_that("mmrm fails if formula contains `.`", { expect_error( mmrm(FEV1 ~ ., data = fev_data, weights = rep(1, 800)), "`.` is not allowed in mmrm models!" ) }) test_that("mmrm can proceed to second optimizer if first one has divergence error", { fake_optimizer <- function(par, fun, grad, ...) { stop("NA/NaN Hessian evaluation") } expect_warning( result <- mmrm( formula = FEV1 ~ ARMCD + us(AVISIT | USUBJID), data = fev_data, control = mmrm_control(optimizers = c(fake = fake_optimizer, h_get_optimizers())) ), "Divergence with optimizer fake due to problems" ) expect_true(attr(result, "converged")) }) test_that("mmrm behaves correctly when some of alternative optimizers have divergence errors", { fake_optimizer <- function(par, fun, grad, ...) { stop("NA/NaN Hessian evaluation") } normal_optimizers <- h_get_optimizers() expect_warning( result <- mmrm( formula = FEV1 ~ ARMCD + us(AVISIT | USUBJID), data = fev_data, control = mmrm_control( optimizers = c(fake = fake_optimizer, normal_optimizers[1:2], fake2 = fake_optimizer) ) ), "Divergence with optimizer fake due to problems" ) expect_true(attr(result, "converged")) }) test_that("mmrm works as expected when the only provided optimizer fails with divergence error", { fake_optimizer <- function(par, fun, grad, ...) { stop("NA/NaN Hessian evaluation") } expect_error( expect_warning( result <- mmrm( formula = FEV1 ~ ARMCD + us(AVISIT | USUBJID), data = fev_data, optimizer_fun = fake_optimizer ), "Divergence with optimizer" ), "Consider trying multiple or different optimizers" ) }) ## vcov and method combination ---- test_that("mmrm works for vcov: Asymptotic and method: Sattherthwaite", { result <- expect_silent( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Satterthwaite", vcov = "Asymptotic" ) ) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_class(result$call, "call") expect_true(result$reml) expect_list(result$jac_list, types = "matrix") }) test_that("mmrm works for vcov: Asymptotic and method: Between-Within", { result <- expect_silent( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Between-Within", vcov = "Asymptotic" ) ) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_class(result$call, "call") expect_true(result$reml) }) test_that("mmrm fails for vcov: Kenward-Roger and method: Sattherthwaite", { expect_error( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Satterthwaite", vcov = "Kenward-Roger" ), "Kenward-Roger degrees of freedom must work together with Kenward-Roger or Kenward-Roger-Linear covariance!" ) }) test_that("mmrm fails for vcov: Kenward-Roger-Linear and method: Sattherthwaite", { expect_error( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Satterthwaite", vcov = "Kenward-Roger-Linear" ), "Kenward-Roger degrees of freedom must work together with Kenward-Roger or Kenward-Roger-Linear covariance!" ) }) test_that("mmrm works for vcov: Empirical and method: Residual", { result <- expect_silent( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Residual", vcov = "Empirical" ) ) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_class(result$call, "call") expect_true(result$reml) expect_matrix(result$beta_vcov_adj) }) test_that("mmrm works for vcov: Jackknife and method: Residual", { result <- expect_silent( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Residual", vcov = "Empirical-Jackknife" ) ) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_class(result$call, "call") expect_true(result$reml) expect_matrix(result$beta_vcov_adj) }) test_that("mmrm works for vcov: Empirical and method: Satterthwaite", { result <- expect_silent( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Satterthwaite", vcov = "Empirical" ) ) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_class(result$call, "call") expect_true(result$reml) expect_matrix(result$beta_vcov_adj) # Here we don't need the Jacobian list. expect_null(result$jac_list) }) test_that("mmrm works for vcov: Jackknife and method: Satterthwaite", { result <- expect_silent( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Satterthwaite", vcov = "Empirical-Jackknife" ) ) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_class(result$call, "call") expect_true(result$reml) expect_matrix(result$beta_vcov_adj) # Here we don't need the Jacobian list. expect_null(result$jac_list) }) test_that("mmrm fails for vcov: Asymptotic and method: Kenward-Roger", { expect_error( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger", vcov = "Asymptotic" ), "Kenward-Roger degrees of freedom must work together with Kenward-Roger or Kenward-Roger-Linear covariance!" ) }) test_that("mmrm works for vcov: Kenward-Roger and method: Kenward-Roger", { result <- expect_silent( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger", vcov = "Kenward-Roger" ) ) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_class(result$call, "call") expect_true(result$reml) expect_list(result$kr_comp, types = "matrix") expect_matrix(result$beta_vcov_adj) }) test_that("mmrm works for vcov: Kenward-Roger-Linear and method: Kenward-Roger", { result <- expect_silent( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger", vcov = "Kenward-Roger-Linear" ) ) expect_class(result, c("mmrm", "mmrm_fit", "mmrm_tmb")) expect_true(attr(result, "converged")) expect_class(result$call, "call") expect_true(result$reml) expect_list(result$kr_comp, types = "matrix") expect_matrix(result$beta_vcov_adj) }) test_that("mmrm fails for vcov: Empirical and method: Kenward-Roger", { expect_error( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger", vcov = "Empirical" ), "Kenward-Roger degrees of freedom must work together with Kenward-Roger or Kenward-Roger-Linear covariance!" ) }) test_that("mmrm fails for vcov: Jackknife and method: Kenward-Roger", { expect_error( mmrm( formula = FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger", vcov = "Empirical-Jackknife" ), "Kenward-Roger degrees of freedom must work together with Kenward-Roger or Kenward-Roger-Linear covariance!" ) })