# car loading ---- test_that("car emits a message about mmrm registration on load", { # Don't use skip_if_not_installed yet since it runs requireNamespace, which # will itself load the package without testing startup. skip_if(length(find.package("car")) < 1) # Detach car in case it was loaded in session or previous test run if (isNamespaceLoaded("car")) { unloadNamespace("car") } expect_message(library(car), "mmrm") }) # h_obtain_lvls ---- test_that("h_obtain_lvls works as expected", { expect_identical( h_obtain_lvls( "a", c("b", "c"), list(a = letters[1:2], b = letters[1:3], c = letters[1:5]) ), list( prior = setNames(integer(0), character(0)), post = c(b = 3L, c = 5L), total = 15 ) ) expect_identical( h_obtain_lvls("a", c("b", "c"), list(b = letters[1:3], c = letters[1:5])), list( prior = c(b = 3L, c = 5L), post = 2L, total = 15 ) ) }) # h_get_index ---- test_that("h_get_index works as expected", { expect_identical( expect_silent(h_get_index(list(c(1, 2), c(3, 4)), list(c(1), c(3, 4)))), c(1L, 2L) ) expect_identical( expect_silent(h_get_index(list(c(1, 2), c(1, 4)), list(c(1), c(1, 4)))), c(1L, NA) ) }) # h_first_term_containing_categ ---- test_that("h_first_term_containing_categ", { expect_identical( h_first_term_containing_categ( attr(terms(get_mmrm_no_intercept()), "factors"), c("RACE", "SEX") ), "RACE" ) }) # h_type2_contrast ---- test_that("h_type2_contrast works if intercept is not given", { fit <- mmrm( FEV1 ~ AVISIT * ARMCD - 1 + ar1(AVISIT | USUBJID), data = fev_data ) expect_silent(h_type2_contrast(fit, "ARMCD")) expect_silent(h_type2_contrast(fit, "AVISIT")) expect_silent(h_type2_contrast(fit, "AVISIT:ARMCD")) mmrm_trans_dimnames <- list(NULL, colnames(component(get_mmrm_trans(), "x_matrix"))) expect_identical( h_type2_contrast(get_mmrm_trans(), "log(FEV1_BL)"), matrix( c(0, 1, rep(0, 7)), nrow = 1, byrow = TRUE, dimnames = mmrm_trans_dimnames ) ) expect_identical( h_type2_contrast(get_mmrm_trans(), "ARMCD:AVISIT"), matrix( rep(rep(c(0, 1), 3), c(6, 1, 9, 1, 9, 1)), nrow = 3, byrow = TRUE, dimnames = mmrm_trans_dimnames ) ) expect_identical( h_type2_contrast(get_mmrm_trans(), "ARMCD:AVISIT"), matrix( rep(rep(c(0, 1), 3), c(6, 1, 9, 1, 9, 1)), nrow = 3, byrow = TRUE, dimnames = mmrm_trans_dimnames ) ) # Testing an intercept-free model whose first term that contains a categorical # variable also has an aliased coefficient. expect_identical( h_type2_contrast(get_mmrm_alias_noint(), "FEV1_BL:ARMCD"), matrix( c(0, 1, 0, 0), nrow = 1, byrow = TRUE, dimnames = list( NULL, colnames(component(get_mmrm_alias_noint(), "x_matrix")) ) ) ) }) # h_type3_contrasts ---- test_that("h_type3_contrasts works as expected", { object <- get_mmrm() result <- h_type3_contrasts(object) # fmt: skip expected <- list( `(Intercept)` = matrix( c(1, 1 / 3, 1 / 3, 1 / 2, 1 / 2, 1 / 4, 1 / 4, 1 / 4, 1 / 8, 1 / 8, 1 / 8), nrow = 1L, ncol = 11L ), RACE = matrix( c(0, 0, -1 / 3, 2 / 3, -1 / 3, -1 / 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 2L, ncol = 11L ), SEX = matrix( c(0, 0, 0, -1 / 2, 0, 0, 0, 0, 0, 0, 0), nrow = 1L, ncol = 11L ), ARMCD = matrix( c(0, 0, 0, 0, -1 / 2, 0, 0, 0, -1 / 8, -1 / 8, -1 / 8), nrow = 1L, ncol = 11L ), AVISIT = matrix( c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1 / 4, 3 / 4, -1 / 4, -1 / 4, -1 / 4, 3 / 4, -1 / 4, -1 / 4, -1 / 4, -1 / 8, 3 / 8, -1 / 8, -1 / 8, -1 / 8, 3 / 8, -1 / 8, -1 / 8, -1 / 8 ), nrow = 3L, ncol = 11L ), `ARMCD:AVISIT` = matrix( c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 / 8, -3 / 8, 1 / 8, 1 / 8, 1 / 8, -3 / 8, 1 / 8, 1 / 8, 1 / 8 ), nrow = 3L, ncol = 11L ) ) expect_equal(result, expected, ignore_attr = TRUE) }) test_that("h_type3_contrasts works as expected", { object <- get_mmrm_trans() result <- h_type3_contrasts(object) expect_equal( result$`log(FEV1_BL)`, matrix(c(0, 1, rep(0, 7)), nrow = 1, byrow = TRUE), ignore_attr = TRUE ) expect_equal( result$ARMCD, matrix(c(0, 0, -1 / 2, rep(0, 3), rep(-1 / 8, 3)), nrow = 1, byrow = TRUE), ignore_attr = TRUE ) expect_equal( result$`ARMCD:AVISIT`, rbind( c(rep(0, 6), rep(1 / 8, 3)), c(rep(0, 6), -3 / 8, 1 / 8, 1 / 8), c(rep(0, 6), 1 / 8, -3 / 8, 1 / 8) ), ignore_attr = TRUE ) }) test_that("h_type3_contrasts works even if the interaction term order changes", { mod1 <- mmrm( formula = FEV1 ~ RACE + AVISIT + RACE * AVISIT + FEV1_BL + us(AVISIT | USUBJID), data = fev_data ) result <- h_type3_contrasts(mod1) ctr <- result$AVISIT mod2 <- mmrm( formula = FEV1 ~ AVISIT + RACE + AVISIT * RACE + FEV1_BL + us(AVISIT | USUBJID), data = fev_data ) result2 <- h_type3_contrasts(mod2) ctr2 <- result2$AVISIT expect_equal(ctr %*% coef(mod1), ctr2 %*% coef(mod2), tolerance = 1e-8) }) test_that("h_type3_contrasts works even if only interaction term exists", { mod1 <- mmrm( formula = FEV1 ~ FEV1_BL:AVISIT - 1 + ar1(AVISIT | USUBJID), data = fev_data ) expect_warning(result <- h_type3_contrasts(mod1), "misleading") expect_snapshot_tolerance(result) mod2 <- mmrm( formula = FEV1 ~ AVISIT + AVISIT:RACE + FEV1_BL + us(AVISIT | USUBJID), data = fev_data ) result2 <- h_type3_contrasts(mod2) expect_snapshot_tolerance(result2) mod3 <- mmrm( formula = FEV1 ~ AVISIT + AVISIT:RACE + FEV1_BL - 1 + us(AVISIT | USUBJID), data = fev_data ) expect_warning(result3 <- h_type3_contrasts(mod3), "misleading") expect_snapshot_tolerance(result3) }) test_that("h_type3_contrasts works for higher-order interaction", { mod <- mmrm( formula = FEV1 ~ ARMCD + RACE + AVISIT + RACE * AVISIT * ARMCD + FEV1_BL + ar1(AVISIT | USUBJID), data = fev_data ) result <- h_type3_contrasts(mod) expect_snapshot_tolerance(result) }) # h_contr_sum_type3_contrasts ---- test_that("h_contr_sum_type3_contrasts works as expected", { object <- get_mmrm() result <- h_contr_sum_type3_contrasts(object) # fmt: skip expected <- list( `(Intercept)` = matrix(c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 1L, ncol = 11L), RACE = matrix(c(0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 2L, ncol = 11L), SEX = matrix(c(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), nrow = 1L, ncol = 11L), ARMCD = matrix(c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), nrow = 1L, ncol = 11L), AVISIT = matrix( c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), nrow = 3L, ncol = 11L ), `ARMCD:AVISIT` = matrix( c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 ), nrow = 3L, ncol = 11L ) ) expect_equal(result, expected) }) test_that("h_contr_sum_type3_contrasts works with aliased coefficients", { object <- get_mmrm_rank_deficient() result <- expect_silent(h_contr_sum_type3_contrasts(object)) expect_identical( names(result), # No SEX2 term in here because that was aliased. c("(Intercept)", "RACE", "SEX", "ARMCD", "AVISIT", "ARMCD:AVISIT") ) }) test_that("h_contr_sum_type3_contrasts also works when there is just an interaction term", { mod1 <- mmrm( formula = FEV1 ~ FEV1_BL:AVISIT - 1 + ar1(AVISIT | USUBJID), data = fev_data ) expect_warning(result <- h_contr_sum_type3_contrasts(mod1), "misleading") expected <- diag(4) expect_equal(result$`FEV1_BL:AVISIT`, expected, ignore_attr = TRUE) }) # Anova ---- test_that("Anova works as expected", { skip_if_not_installed("car") expect_snapshot_tolerance( car::Anova(get_mmrm(), "3") ) expect_snapshot_tolerance( car::Anova(get_mmrm_weighted(), "3") ) expect_snapshot_tolerance( car::Anova(get_mmrm_rank_deficient(), "3") ) expect_snapshot_tolerance( car::Anova(get_mmrm_trans(), "3") ) expect_snapshot_tolerance( car::Anova(get_mmrm(), "2") ) expect_snapshot_tolerance( car::Anova(get_mmrm_weighted(), "2") ) expect_snapshot_tolerance( car::Anova(get_mmrm_rank_deficient(), "2") ) expect_snapshot_tolerance( car::Anova(get_mmrm_trans(), "2") ) expect_snapshot_tolerance( car::Anova(get_mmrm(), type = "III", test.statistic = "Chisq") ) expect_snapshot_tolerance( car::Anova(get_mmrm_alias_noint(), type = "II", test.statistic = "F") ) }) test_that("Anova works if covariate are character", { skip_if_not_installed("car") fev2 <- fev_data fev2$ARMCD <- as.character(fev2$ARMCD) fit <- mmrm(FEV1 ~ ARMCD * AVISIT + ar1(AVISIT | USUBJID), data = fev2) fit2 <- mmrm(FEV1 ~ ARMCD * AVISIT + ar1(AVISIT | USUBJID), data = fev_data) expect_identical( car::Anova(fit, "III"), car::Anova(fit2, "III") ) expect_identical( car::Anova(fit, "II"), car::Anova(fit2, "II") ) }) test_that("Anova gives a warning if type III test is performed on a model without intercept", { skip_if_not_installed("car") fit <- mmrm( FEV1 ~ ARMCD * AVISIT - 1 + ar1(AVISIT | USUBJID), data = fev_data ) expect_warning( car::Anova(fit, "III"), "Type III tests can give misleading results for models without an intercept" ) expect_silent( car::Anova(fit, "II") ) }) # Anova Integration Test ---- test_that("Anova give similar results to SAS", { skip_if_not_installed("car") fit <- mmrm(FEV1 ~ ARMCD * FEV1_BL + ar1(AVISIT | USUBJID), data = fev_data) df2 <- expect_silent(car::Anova(fit, "2")) df3 <- expect_silent(car::Anova(fit, "3")) # the SAS results from design/anova/test2_1.csv and design/anova/test3_1.csv # they shared the same model expect_equal( df2$`Res.Df`, c(199.582314485653, 196.41571750149, 198.163532037944), tolerance = 1e-4 ) expect_equal( df2$`F`, c(0.03099660681111, 11.5301174147263, 0.7644368094469), tolerance = 1e-4 ) expect_equal( df3$`Res.Df`, c(199.582314485653, 198.163532037936, 198.163532037944), tolerance = 1e-4 ) expect_equal( df3$`F`, c(0.03099660681111, 11.0435094615508, 0.7644368094469), tolerance = 1e-4 ) }) test_that("Anova give similar results to SAS", { skip_if_not_installed("car") fit <- mmrm( FEV1 ~ ARMCD * SEX + ARMCD * FEV1_BL - FEV1_BL + ar1(AVISIT | USUBJID), data = fev_data ) df2 <- expect_silent(car::Anova(fit, "2")) df3 <- expect_silent(car::Anova(fit, "3")) # the SAS results from design/anova/test2_1.csv and design/anova/test3_1.csv # they shared the same model expect_equal( df2$`Res.Df`, c(196.700026021882, 186.404412481085, 186.11901853766, 194.942672335072), tolerance = 1e-4 ) expect_equal( df2$`F`, c(0.03093826913613, 0.10489707559679, 0.46643535342468, 6.11482167585228), tolerance = 1e-4 ) expect_equal( df3$`Res.Df`, c(197.423866403271, 186.119018537661, 186.11901853766, 194.942672335072), tolerance = 1e-4 ) expect_equal( df3$`F`, c(0.04875135180324, 0.09277653315012, 0.46643535342468, 6.11482167585228), tolerance = 1e-4 ) }) test_that("Anova results are compatible with broom::tidy", { skip_if_not_installed("car") skip_if_not_installed("broom") fit <- mmrm( FEV1 ~ ARMCD * SEX + ARMCD * FEV1_BL - FEV1_BL + ar1(AVISIT | USUBJID), data = fev_data ) df2 <- expect_silent(car::Anova(fit, "2")) df2_chisq <- expect_silent(car::Anova(fit, "2", test.statistic = "Chisq")) df3 <- expect_silent(car::Anova(fit, "3")) df3_chisq <- expect_silent(car::Anova(fit, "3", test.statistic = "Chisq")) tidy2 <- expect_silent(broom::tidy(df2)) tidy2_chisq <- expect_silent(broom::tidy(df2_chisq)) tidy3 <- expect_silent(broom::tidy(df3)) tidy3_chisq <- expect_silent(broom::tidy(df3_chisq)) expect_names( names(tidy2), identical.to = c("term", "df", "df.residual", "statistic", "p.value") ) expect_names( names(tidy2_chisq), identical.to = c("term", "df", "statistic", "p.value") ) expect_names( names(tidy3), identical.to = c("term", "df", "df.residual", "statistic", "p.value") ) expect_names( names(tidy3_chisq), identical.to = c("term", "df", "statistic", "p.value") ) }) test_that("Anova Type 3 results are compatible with emmeans::joint_tests", { skip_if_not_installed("car") skip_if_not_installed("emmeans") # Uses the data from https://github.com/openpharma/mmrm/issues/502 # fmt: skip dane_post_part <- data.frame( PatientId = structure(c( 44L, 12L, 58L, 55L, 51L, 5L, 41L, 48L, 20L, 37L, 8L, 27L, 30L, 26L, 33L, 21L, 13L, 33L, 18L, 52L, 39L, 38L, 6L, 58L, 25L, 35L, 1L, 4L, 42L, 46L, 38L, 40L, 1L, 28L, 26L, 9L ), levels = c( "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "101", "102", "103", "104", "105", "106", "107", "108", "109", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "130" ), class = "factor"), Timepoint = structure(c( 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L ), levels = c("Month 6", "Month 12"), class = "factor"), Response = c( 5.5, 6.5, 5, 7, 6, 3, 6, 7.5, 5.5, 4, 3, 4.5, 3.5, 3.5, 4.5, 6.5, 4, 4, 6.5, 5, 5, 5, 3, 5.5, 6.5, 6.5, 6, 4, 7.5, 6.5, 5, 3, 3, 5.5, 3.5, 3.5 ), Method = structure(c( 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L ), levels = c("A", "B"), class = "factor"), Response_Bas = c( 5.5, 8.5, 5.5, 7.5, 6.5, 7, 8, 7.5, 7.5, 8, 7.5, 6.5, 5.5, 5.5, 5, 8.5, 8.5, 5, 8.5, 5.5, 6.5, 5.5, 5.5, 5.5, 8.5, 7, 5.5, 11.5, 8, 6.5, 5.5, 5, 5.5, 7.5, 5.5, 12 ), CFB = c( 0, -2, -0.5, -0.5, -0.5, -4, -2, 0, -2, -4, -4.5, -2, -2, -2, -0.5, -2, -4.5, -1, -2, -0.5, -1.5, -0.5, -2.5, 0, -2, -0.5, 0.5, -7.5, -0.5, 0, -0.5, -2, -2.5, -2, -2, -8.5 ), Response_Bas_cent = c( -1.14166666666667, 1.85833333333333, -1.14166666666667, 0.858333333333333, -0.141666666666667, 0.358333333333333, 1.35833333333333, 0.858333333333333, 0.858333333333333, 1.35833333333333, 0.858333333333333, -0.141666666666667, -1.14166666666667, -1.14166666666667, -1.64166666666667, 1.85833333333333, 1.85833333333333, -1.64166666666667, 1.85833333333333, -1.14166666666667, -0.141666666666667, -1.14166666666667, -1.14166666666667, -1.14166666666667, 1.85833333333333, 0.358333333333333, -1.14166666666667, 4.85833333333333, 1.35833333333333, -0.141666666666667, -1.14166666666667, -1.64166666666667, -1.14166666666667, 0.858333333333333, -1.14166666666667, 5.35833333333333 ) ) fit <- mmrm( Response ~ Method * Timepoint + us(Timepoint | PatientId), data = dane_post_part, method = "Kenward-Roger" ) car_result <- car::Anova(fit, type = "3") emmeans_result <- emmeans::joint_tests(fit) # Here we want very close agreement, because only factors were used as covariates. expect_equal(car_result$F, emmeans_result$F.ratio, tolerance = 1e-3) # Here we just test for approximate agreement, therefore use a large tolerance. # This is because we have interactions with a continuous covariate. fit2 <- update(fit, . ~ . + Method * Timepoint * Response_Bas_cent) car_result2 <- car::Anova(fit2, type = "3") emmeans_result2 <- emmeans::joint_tests(fit2) expect_equal(car_result2$F, emmeans_result2$F.ratio, tolerance = 1e-1) })