# recover_data ---- test_that("emmeans emits a message about mmrm registration on load", { # Don't use skip_if_not_installed yet since it runs requireNamespace, which # will itself load the package without testing startup. skip_if(length(find.package("emmeans")) < 1) # Detach emmeans in case it was loaded in session or previous test run if (isNamespaceLoaded("emmeans")) { unloadNamespace("emmeans") } expect_message(library(emmeans), "mmrm") }) test_that("recover_data method works as expected", { skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- get_mmrm() result <- emmeans::recover_data(fit) expect_data_frame(result, nrows = nrow(fit$tmb_data$x_matrix)) expect_named( attributes(result), c("names", "row.names", "class", "call", "terms", "predictors", "responses") ) }) test_that("recover_data method works as expected for rank deficient model", { skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- get_mmrm_rank_deficient() result <- emmeans::recover_data(fit) expect_data_frame(result, nrows = nrow(fit$tmb_data$x_matrix)) expect_named(result, c("RACE", "SEX", "SEX2", "ARMCD", "AVISIT")) }) # emm_basis ---- test_that("emm_basis method works as expected", { skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- get_mmrm() trms <- stats::delete.response(stats::terms(fit$formula_parts$model_formula)) xlev <- list( AVISIT = c("VIS1", "VIS2", "VIS3", "VIS4"), ARMCD = c("PBO", "TRT"), RACE = c("Asian", "Black or African American", "White"), SEX = c("Male", "Female") ) # Fit a linear model with the same formula so that we don't rely on # emm_basis just yet. lm_mod <- stats::lm(fit$formula_parts$model_formula, data = fev_data) grid <- emmeans::ref_grid(lm_mod) result <- emmeans::emm_basis(fit, trms = trms, xlev = xlev, grid = grid) expect_list(result) expect_named(result, c("X", "bhat", "nbasis", "V", "dffun", "dfargs")) }) test_that("emm_basis method works also for rank deficient fit", { skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- get_mmrm_rank_deficient() trms <- stats::delete.response(stats::terms(fit$formula_parts$model_formula)) xlev <- list( AVISIT = c("VIS1", "VIS2", "VIS3", "VIS4"), ARMCD = c("PBO", "TRT"), RACE = c("Asian", "Black or African American", "White"), SEX = c("Male", "Female"), SEX2 = c("Male", "Female") ) # Fit a linear model with the same formula so that we don't rely on # emm_basis just yet. lm_mod <- stats::lm(fit$formula_parts$model_formula, data = fit$data) grid <- suppressMessages(emmeans::ref_grid(lm_mod)) result <- emmeans::emm_basis(fit, trms = trms, xlev = xlev, grid = grid) expect_list(result) expect_named(result, c("X", "bhat", "nbasis", "V", "dffun", "dfargs")) }) # emmeans ---- test_that("emmeans works as expected", { skip_if_r_devel_linux_clang() skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- get_mmrm() result <- expect_silent(emmeans::emmeans(fit, ~ ARMCD | AVISIT)) expect_class(result, "emmGrid") result_emmeans <- as.data.frame(result)$emmean expected_emmeans <- c(33.3, 37.1, 38.2, 41.9, 43.7, 46.8, 48.4, 52.8) expect_equal(result_emmeans, expected_emmeans, tolerance = 1e-3) }) test_that("emmeans works for spatial covariance", { fit <- mmrm(FEV1 ~ FEV1_BL + ARMCD * AVISIT + sp_exp(VISITN, VISITN2 | USUBJID), data = fev_data) lsmeans <- expect_silent(emmeans(fit, ~ ARMCD * AVISIT)) diffs <- expect_silent(summary(pairs(lsmeans, adjust = "none"))) expect_snapshot_tolerance(diffs) }) test_that("emmeans works as expected for transformed variables", { skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- mmrm(FEV1 ~ log(FEV1_BL) + AVISIT + ar1(AVISIT | USUBJID), data = fev_data) result <- expect_silent(emmeans::emmeans(fit, ~AVISIT)) expect_class(result, "emmGrid") result_emmeans <- as.data.frame(result)$emmean expected_emmeans <- c(34.99641, 39.86572, 44.54411, 50.53663) expect_equal(result_emmeans, expected_emmeans, tolerance = 1e-3) }) test_that("emmeans works as expected for transformed variables and fixed effect is not visit", { skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- mmrm(FEV1 ~ log(FEV1_BL) + ARMCD + ar1(AVISIT | USUBJID), data = fev_data) result <- expect_silent(emmeans::emmeans(fit, ~ ARMCD | AVISIT)) expect_class(result, "emmGrid") result_emmeans <- as.data.frame(result)$emmean expected_emmeans <- c(40.41980, 44.78855, 40.41980, 44.78855, 40.41980, 44.78855, 40.41980, 44.78855) expect_equal(result_emmeans, expected_emmeans, tolerance = 1e-3) }) test_that("emmeans gives values close to what is expected", { skip_if_r_devel_linux_clang() skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- get_mmrm() result <- expect_silent(emmeans::emmeans(fit, ~ ARMCD | AVISIT)) result_df <- as.data.frame(result) # See design/SAS/sas_log_reml.txt for the source of numbers. expected_df <- data.frame( ARMCD = factor(rep(c("PBO", "TRT"), 4)), AVISIT = factor(rep(paste0("VIS", 1:4), each = 2)), emmean = c(33.3318, 37.1063, 38.1715, 41.9037, 43.6740, 46.7546, 48.3855, 52.7841), SE = c(0.7554, 0.7626, 0.6117, 0.6023, 0.4617, 0.5086, 1.1886, 1.1877), df = c(148, 143, 147, 144, 130, 130, 134, 133) ) expect_identical(result_df[1:2], expected_df[1:2]) expect_equal(result_df$emmean, expected_df$emmean, tolerance = 1e-4) expect_equal(result_df$SE, expected_df$SE, tolerance = 1e-4) expect_true(all(abs(result_df$df - expected_df$df) < 0.6)) }) test_that("emmeans works as expected also for rank deficient fit when singular coefficients are not involved", { skip_if_r_devel_linux_clang() skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- get_mmrm_rank_deficient() expect_message( result <- emmeans::emmeans(fit, ~ ARMCD | AVISIT), "A nesting structure was detected in the fitted model" ) expect_class(result, "emmGrid") result_emmeans <- as.data.frame(result)$emmean expected_emmeans <- c(33.3, 37.1, 38.2, 41.9, 43.7, 46.8, 48.4, 52.8) expect_equal(result_emmeans, expected_emmeans, tolerance = 1e-3) }) test_that("emmeans works as expected also for rank deficient fit when singular coefficients are involved", { skip_if_not_installed("emmeans", minimum_version = "1.6") fit <- get_mmrm_rank_deficient() # We get a message from `emmeans` but that is ok. expect_message( result <- emmeans::emmeans(fit, ~SEX2), "A nesting structure was detected in the fitted model" ) expect_class(result, "emmGrid") result_emmeans <- as.data.frame(result)$emmean expect_message(expected <- emmeans::emmeans(fit, ~SEX)) expected_emmeans <- as.data.frame(expected)$emmean expect_identical(result_emmeans, expected_emmeans) }) test_that("emmeans works as expected also for weighted model", { skip_if_not_installed("emmeans", minimum_version = "1.6") formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) fit <- mmrm(formula, fev_data, weights = fev_data$WEIGHT) result <- expect_silent(emmeans::emmeans(fit, ~ ARMCD | AVISIT)) expect_class(result, "emmGrid") result_emmeans_df <- as.data.frame(result)[, c("ARMCD", "AVISIT", "emmean", "SE")] # See design/SAS/sas_weighted.txt for the source of numbers. expected_emmeans_df <- data.frame( ARMCD = factor(c("PBO", "TRT", "PBO", "TRT", "PBO", "TRT", "PBO", "TRT")), AVISIT = factor(c("VIS1", "VIS1", "VIS2", "VIS2", "VIS3", "VIS3", "VIS4", "VIS4")), emmean = c(33.37, 36.77, 38.24, 41.66, 43.42, 46.82, 48.17, 52.43), SE = c(0.772, 0.776, 0.617, 0.585, 0.468, 0.543, 1.163, 1.226) ) expect_equal(result_emmeans_df, expected_emmeans_df, tolerance = 1e-3) }) test_that("emmeans gives d.f. close to what is expected for weighted model", { skip_if_not_installed("emmeans", minimum_version = "1.6") formula <- FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID) fev_data <- within(fev_data, AVISIT <- relevel(AVISIT, ref = "VIS4")) # nolint fit <- mmrm(formula, fev_data, weights = fev_data$WEIGHT) result <- expect_silent(emmeans::emmeans(fit, pairwise ~ ARMCD * AVISIT)) expect_class(result, "emm_list") result_emmeans_df <- as.data.frame(result$emmeans)[, c("ARMCD", "AVISIT", "df")] result_contrasts_df <- as.data.frame(result$contrasts)[, c("contrast", "df")] # See design/SAS/R_weighted_nlme.txt for the source of numbers. expected_emmeans_df <- data.frame( ARMCD = factor(c("PBO", "TRT", "PBO", "TRT", "PBO", "TRT", "PBO", "TRT")), AVISIT = factor(c("VIS4", "VIS4", "VIS1", "VIS1", "VIS2", "VIS2", "VIS3", "VIS3"), levels = c("VIS4", "VIS1", "VIS2", "VIS3") ), df = c(134, 132, 147, 142, 144, 143, 128, 128) ) expect_equal(result_emmeans_df, expected_emmeans_df, tolerance = 1e-2) expected_contrasts_df <- data.frame( contrast = c( "PBO VIS4 - TRT VIS4", "PBO VIS4 - PBO VIS1", "PBO VIS4 - TRT VIS1", "PBO VIS4 - PBO VIS2", "PBO VIS4 - TRT VIS2", "PBO VIS4 - PBO VIS3", "PBO VIS4 - TRT VIS3", "TRT VIS4 - PBO VIS1", "TRT VIS4 - TRT VIS1", "TRT VIS4 - PBO VIS2", "TRT VIS4 - TRT VIS2", "TRT VIS4 - PBO VIS3", "TRT VIS4 - TRT VIS3", "PBO VIS1 - TRT VIS1", "PBO VIS1 - PBO VIS2", "PBO VIS1 - TRT VIS2", "PBO VIS1 - PBO VIS3", "PBO VIS1 - TRT VIS3", "TRT VIS1 - PBO VIS2", "TRT VIS1 - TRT VIS2", "TRT VIS1 - PBO VIS3", "TRT VIS1 - TRT VIS3", "PBO VIS2 - TRT VIS2", "PBO VIS2 - PBO VIS3", "PBO VIS2 - TRT VIS3", "TRT VIS2 - PBO VIS3", "TRT VIS2 - TRT VIS3", "PBO VIS3 - TRT VIS3" ), df = c( 133, 148, 231, 158, 198, 157, 190, 223, 122, 196, 147, 170, 161, 142, 151, 257, 157, 251, 258, 135, 225, 168, 144, 160, 270, 264, 159, 129 ) ) expect_equal(result_contrasts_df, expected_contrasts_df, tolerance = 1e-2) })