# h_record_all_outputs ---- test_that("h_record_all_outputs correctly removes specified messages", { result <- h_record_all_output( { x <- 1 y <- 2 warning("something went wrong") message("O nearly done") message("Almost done") x + y }, remove = list(messages = c("Almost done", "bla")) ) expected <- list( result = 3, warnings = "something went wrong", errors = NULL, messages = "O nearly done", divergence = NULL ) expect_identical(result, expected) }) test_that("h_record_all_outputs works as expected with no removal list given for messages", { result <- h_record_all_output({ x <- 1 y <- 2 warning("something went wrong") message("O nearly done") message("oh noo") x + y }) expected <- list( result = 3, warnings = "something went wrong", errors = NULL, messages = c("O nearly done", "oh noo"), divergence = NULL ) expect_identical(result, expected) }) test_that("h_record_all_outputs catches divergence errors, warnings, messages as expected", { result <- expect_silent(h_record_all_output( { x <- 1 y <- 2 warning("div1") message("div2") stop("div3") x + y }, divergence = list(warnings = "div1", errors = "div3", messages = "div2") )) expect_setequal(result$divergence, c("div1", "div2", "div3")) }) # h_tr ---- test_that("trace of a matrix works as expected", { mx <- matrix(0, nrow = 3, ncol = 4) expect_error(h_tr(mx), "x must be square matrix") v <- c(1, 3, 2) expect_equal(h_tr(diag(v)), 6) }) # h_split_control ---- test_that("h_split_control split the control args based on optimizers", { control <- mmrm_control() controls <- h_split_control(control) expect_identical(length(controls), length(control$optimizers)) non_opt <- c("start", "accept_singular", "method", "n_cores") for (i in seq_len(length(controls))) { expect_identical(controls[[i]]$optimizers[[1]], control$optimizers[[i]]) expect_identical(controls[[i]][non_opt], control[non_opt]) } }) test_that("h_split_control split the control args with updated arguments", { control <- mmrm_control() start <- c(1, 2, 3) method <- "Kenward-Roger" controls <- h_split_control(control, start = start, method = method) for (i in seq_len(length(controls))) { expect_identical(controls[[i]][["start"]], start) expect_identical(controls[[i]][["method"]], method) } }) # h_get_optimizers ---- test_that("h_get_optimizers works for default optimizers", { opt1 <- h_get_optimizers("nlminb") expect_identical(opt1, h_optimizer_fun("nlminb"), ignore_attr = TRUE) expect_identical(opt1[[1]], stats::nlminb, ignore_attr = TRUE) }) test_that("h_get_optimizers works added arguments", { opt1 <- h_get_optimizers("nlminb", optimizer_args = list(a = 1, b = 2)) expect_identical(attr(opt1[[1]], "args"), list(control = list(), a = 1, b = 2)) }) test_that("h_get_optimizers works custom optimizer", { opt1 <- h_get_optimizers(optimizer_fun = silly_optimizer, optimizer_args = list(a = 1, b = 2)) expect_identical(opt1[[1]], silly_optimizer, ignore_attr = TRUE) expect_identical(attr(opt1[[1]], "args"), list(control = list(), a = 1, b = 2)) }) # h_optimizer_fun ---- test_that("h_optimizer_fun return correct optimizer", { opts <- h_optimizer_fun() expect_identical(opts[[1]], stats::optim, ignore_attr = TRUE) expect_identical(opts[[2]], stats::optim, ignore_attr = TRUE) expect_identical(opts[[3]], stats::optim, ignore_attr = TRUE) expect_identical(opts[[4]], stats::nlminb, ignore_attr = TRUE) expect_identical(attr(opts[[1]], "args"), list(method = "L-BFGS-B")) expect_identical(attr(opts[[2]], "args"), list(method = "BFGS")) expect_identical(attr(opts[[3]], "args"), list(method = "CG")) expect_identical(attr(opts[[4]], "use_hessian"), TRUE) }) # h_partial_fun_args ---- test_that("h_partial_fun_args works correctly to add attributes", { opt1 <- h_partial_fun_args(stats::optim, a = 1, b = 2, additional_attr = list(a = 1, b = 2)) expect_identical(opt1, stats::optim, ignore_attr = TRUE) expect_identical(attr(opt1, "args"), list(a = 1, b = 2)) expect_identical(attr(opt1, "a"), 1) expect_identical(attr(opt1, "b"), 2) }) test_that("fill_names completes names of input values", { expect_identical( fill_names(c("a", "b")), c(a = "a", b = "b") ) expect_identical( fill_names(c(a = "a", "b")), c(a = "a", b = "b") ) expect_identical( fill_names(list("a", "b")), list(a = "a", b = "b") ) expect_identical( fill_names(list(a = "a", "b")), list(a = "a", b = "b") ) }) # h_get_cov_default ---- test_that("h_get_cov_default works correctly", { expect_identical(h_get_cov_default("Satterthwaite"), "Asymptotic") expect_identical(h_get_cov_default("Between-Within"), "Asymptotic") expect_identical(h_get_cov_default("Kenward-Roger"), "Kenward-Roger") expect_identical(h_get_cov_default("Residual"), "Empirical") expect_error( h_get_cov_default("UNKNOWN"), "'arg' should be one of \"Satterthwaite\", \"Kenward-Roger\", \"Residual\", \"Between-Within\"" ) }) # h_confirm_large_levels ---- test_that("h_confirm_large_levels errors for large number", { skip_if(interactive()) expect_error(h_confirm_large_levels(120), "Visit levels too large") }) test_that("h_confirm_large_levels errors for large number", { expect_silent(h_confirm_large_levels(10)) }) # h_default_value ---- test_that("h_default_value works", { x <- 123 expect_identical(h_default_value(x), x) expect_identical(h_default_value(x, "test"), x) expect_identical(h_default_value(NULL, x), x) }) # h_h_factor_ref ---- test_that("h_factor_ref works", { ref <- factor(c("a", "b", "c"), levels = c("c", "b", "a")) x <- c("a", "b") f <- expect_silent(h_factor_ref(x, ref)) expect_identical(levels(f), levels(ref)) x <- factor(c("a", "b")) f <- expect_silent(h_factor_ref(x, ref)) expect_identical(levels(f), levels(ref)) }) test_that("h_factor_ref fails on non existing level", { ref <- factor(c("a", "b", "c"), levels = c("c", "b", "a")) x <- c("a", "d") expect_error(h_factor_ref(x, ref), "has additional elements") }) test_that("h_factor_ref works with character", { ref <- c("a", "b", "c") x <- c("a", "b") f <- expect_silent(h_factor_ref(x, ref)) expect_identical(levels(f), ref) }) test_that("h_factor ref allows NA in x", { ref <- c("a", "b", "c") x <- c("a", "b", NA) f <- expect_silent(h_factor_ref(x, ref)) expect_identical(levels(f), ref) }) # h_factor_ref_data ---- test_that("h_factor_ref_data works", { df <- data.frame( RACE = c("White", "White"), SEX = factor(c("Female", "Male"), levels = c("Female", "Male")), AVISIT = factor(c("VIS1", "VIS2"), levels = c("VIS2", "VIS1")), ARMCD = factor(c("PBO", "TRT"), levels = c("TRT", "PBO")), non_related = c("AA", "BB") ) fit <- get_mmrm() f <- expect_silent(h_factor_ref_data(fit, df)) assert_factor(f$RACE, levels = levels(fit$tmb_data$full_frame$RACE)) assert_factor(f$SEX, levels = levels(fit$tmb_data$full_frame$SEX)) assert_factor(f$AVISIT, levels = levels(fit$tmb_data$full_frame$AVISIT)) assert_factor(f$ARMCD, levels = levels(fit$tmb_data$full_frame$ARMCD)) assert_character(f$non_related) }) # std_start ---- test_that("std_start works", { expect_identical( std_start("us", 4, 3), rep(0, 30) ) expect_identical( std_start("toep", 5, 3), rep(0, 15) ) expect_identical( std_start("toeph", 4, 2), rep(0, 14) ) expect_identical( std_start("ar1", 4, 3), rep(c(0, 0.5), 3) ) expect_identical( std_start("ar1h", 4, 3), rep(c(rep(0, 4), 0.5), 3) ) expect_identical( std_start("ad", 5, 3), rep(0, 15) ) expect_identical( std_start("adh", 5, 3), rep(0, 27) ) expect_identical( std_start("cs", 4, 3), rep(0, 6) ) expect_identical( std_start("csh", 4, 4), rep(0, 20) ) expect_identical( std_start("sp_exp", 5, 5), rep(0, 10) ) }) # h_get_theta_from_cov ---- test_that("h_get_theta_from_cov works", { theta <- c(0, log(2), 3) mat_chol <- matrix(c(1, 0, 6, 2), nrow = 2L, byrow = TRUE) mat <- mat_chol %*% t(mat_chol) expect_equal( h_get_theta_from_cov(mat), theta ) }) test_that("h_get_theta_from_cov use 0/1 to impute the NA values", { theta <- c(0, log(2), 3) theta2 <- c(theta[1:2], rep(0, 2), theta[3], rep(0, 5)) mat_chol <- matrix(c(1, 0, 6, 2), nrow = 2L, byrow = TRUE) mat <- mat_chol %*% t(mat_chol) mat2 <- matrix(NA_real_, nrow = 4L, ncol = 4L) mat2[1:2, 1:2] <- mat expect_equal( h_get_theta_from_cov(mat2), theta2 ) }) # emp_start ---- test_that("emp_start works", { full_frame <- fev_data[!is.na(fev_data$FEV1), ] model_formula <- FEV1 ~ AVISIT group_var <- NULL visit_var <- "AVISIT" subject_var <- "USUBJID" n_visits <- 4L n_subjects <- 197L subject_groups <- factor(rep(0, 197)) fit <- lm(model_formula, data = full_frame) res <- residuals(fit) res_mat <- matrix( res[as.character(seq(1, 800))], byrow = TRUE, ncol = 4L ) emp_mat <- cov(res_mat, use = "pairwise.complete.obs") expect_equal( emp_start(full_frame, model_formula, visit_var, subject_var, n_visits, n_subjects, subject_groups), h_get_theta_from_cov(emp_mat) ) })