# coef ---- test_that("coef works as expected", { object <- get_mmrm_tmb() result <- expect_silent(coef(object)) expected <- c( "(Intercept)" = 41.2273, "RACEBlack or African American" = 0.8002, "RACEWhite" = 5.8791 ) expect_equal(result, expected, tolerance = 1e-4) }) test_that("coef works as expected for rank deficient model", { object <- get_mmrm_tmb_rank_deficient() result <- expect_silent(coef(object)) expected <- c( "(Intercept)" = 42.8058, SEXFemale = 0.0452, SEX2Female = NA ) expect_equal(result, expected, tolerance = 1e-4) result2 <- expect_silent(coef(object, complete = FALSE)) expected2 <- expected[1:2] expect_equal(result2, expected2, tolerance = 1e-4) }) # fitted ---- test_that("fitted works as expected", { object <- get_mmrm_tmb() result <- expect_silent(fitted(object)) expect_numeric(result, names = "unique", len = length(object$tmb_data$y_vector)) }) test_that("fitted give same result compared to nlme", { skip_if_not_installed("nlme") formula <- FEV1 ~ ARMCD + ar1(AVISIT | USUBJID) data_full <- fev_data[complete.cases(fev_data), ] # In this test, subject IDs are ordered. expect_true(all(diff(as.integer(data_full$USUBJID)) >= 0)) fit <- mmrm(formula = formula, data = data_full, method = "Satterthwaite") fit_gls <- nlme::gls(FEV1 ~ ARMCD, data_full, correlation = nlme::corAR1(form = ~ VISITN | USUBJID)) expect_identical(fitted(fit_gls), fitted(fit), tolerance = 1e-4, ignore_attr = TRUE) }) test_that("fitted give same result compared to nlme if the order is changed", { skip_if_not_installed("nlme") formula <- FEV1 ~ ARMCD + ar1(AVISIT | USUBJID) data_full <- fev_data[complete.cases(fev_data), ] new_order <- sample(seq_len(nrow(data_full))) fit <- mmrm(formula = formula, data = data_full[new_order, ], method = "Satterthwaite") fit_gls <- nlme::gls(FEV1 ~ ARMCD, data_full[new_order, ], correlation = nlme::corAR1(form = ~ VISITN | USUBJID)) expect_identical(fitted(fit_gls), fitted(fit)[new_order], tolerance = 1e-4, ignore_attr = TRUE) }) # h_get_prediction ---- test_that("h_get_prediction works", { fit <- get_mmrm() res <- expect_silent(h_get_prediction(fit$tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov)) expect_true(length(res$index) == 197) }) test_that("h_get_prediction works for partial data", { fit <- get_mmrm() data <- fev_data[c(1:4, 97:100), ] full_frame <- model.frame(fit, data = data, include = c("subject_var", "visit_var", "group_var", "response_var"), na.action = "na.pass" ) tmb_data <- h_mmrm_tmb_data( fit$formula_parts, full_frame, weights = rep(1, nrow(full_frame)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) res <- expect_silent(h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov)) expect_true(length(res$index) == 2) expect_true(length(res$covariance) == 2) expect_identical(length(res$index[[1]]), nrow(res$covariance[[1]])) }) # predict ----- test_that("predict works for old patient, new visit", { fit <- get_mmrm() expect_silent(predict(fit, fev_data[c(1, 4), ])) expect_silent(predict(fit, fev_data[c(2, 3), ])) expect_silent(predict(fit, fev_data[c(1:4), ])) }) test_that("predict works for only fit values without response", { object <- get_mmrm() m <- stats::model.matrix( object$formula_parts$model_formula, model.frame(object, data = fev_data, include = "response_var", na.action = "na.pass") ) fev_data_no_y <- fev_data fev_data_no_y$FEV1 <- NA_real_ y_pred <- expect_silent(predict(object, fev_data_no_y)) y_hat <- as.vector(m %*% object$beta_est) expect_equal(y_pred, y_hat, ignore_attr = TRUE) }) test_that("predict works for only fit values with response", { object <- get_mmrm() y_pred <- expect_silent(predict(object, fev_data)) expect_equal(y_pred[!is.na(fev_data$FEV1)], object$tmb_data$y_vector, ignore_attr = TRUE) expect_numeric(y_pred[is.na(fev_data$FEV1)]) }) test_that("predict warns on aliased variables", { new_fev_data <- rbind( fev_data, fev_data %>% dplyr::filter(ARMCD == fev_data$ARMCD[1], AVISIT == "VIS1") %>% dplyr::mutate(AVISIT = "VIS5", FEV1 = rnorm(dplyr::n(), mean = 45, sd = 5)) ) fit <- mmrm( formula = FEV1 ~ ARMCD * AVISIT + us(AVISIT | USUBJID), data = new_fev_data ) expect_warning(predict(fit), "In fitted object there are co-linear variables and therefore dropped terms") }) test_that("predict will return on correct order", { new_order <- sample(seq_len(nrow(fev_data))) fit <- get_mmrm() fev_data2 <- fev_data fev_data2$FEV1 <- NA_real_ predicted <- predict(fit, newdata = fev_data2[new_order, ]) m <- stats::model.matrix( fit$formula_parts$model_formula, model.frame(fit, data = fev_data2[new_order, ], include = "response_var", na.action = "na.pass") ) expect_identical( predicted, (m %*% fit$beta_est)[, 1], tolerance = 1e-8 ) }) test_that("predict will return NA if data contains NA in covariates", { new_order <- sample(seq_len(nrow(fev_data))) fit <- get_mmrm() fev_data2 <- fev_data fev_data2$FEV1 <- NA_real_ fev_data2$SEX[1:20] <- NA predicted <- predict(fit, newdata = fev_data2[new_order, ], se.fit = TRUE, interval = "confidence") m <- stats::model.matrix( fit$formula_parts$model_formula, model.frame(fit, data = fev_data2[new_order, ], include = "response_var", na.action = "na.pass") ) expect_identical( predicted[, "fit"], (m %*% fit$beta_est)[, 1], tolerance = 1e-8 ) na_index <- which(new_order <= 20) expect_identical( predicted[na_index, ], matrix(NA_real_, nrow = 20, ncol = 4, dimnames = list(row.names(m)[na_index], c("fit", "se", "lwr", "upr"))) ) }) test_that("predict can give unconditional predictions", { fit <- get_mmrm() expect_silent(p <- predict(fit, newdata = fev_data, conditional = FALSE)) m <- stats::model.matrix( fit$formula_parts$model_formula, model.frame(fit, data = fev_data, include = "response_var", na.action = "na.pass") ) expect_equal( p, (m %*% fit$beta_est)[, 1], tolerance = 1e-7 ) }) test_that("predict can change based on coefficients", { fit <- get_mmrm() new_beta <- coef(fit) + 0.1 fit$beta_est <- new_beta m <- stats::model.matrix( fit$formula_parts$model_formula, model.frame(fit, data = fev_data, include = "response_var", na.action = "na.pass") ) expect_silent(p <- predict(fit, newdata = fev_data, conditional = FALSE)) expect_equal( p, (m %*% new_beta)[, 1], tolerance = 1e-7 ) }) test_that("predict can work if response is an expression", { fit <- mmrm(log(FEV1) + FEV1 ~ ARMCD * AVISIT + ar1(AVISIT | USUBJID), data = fev_data) expect_silent(p <- predict(fit, newdata = fev_data, conditional = FALSE)) }) ## integration test with SAS ---- test_that("predict gives same result with sas in unstructured satterthwaite/Kenward-Roger", { fit <- mmrm(FEV1 ~ ARMCD + us(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger") full_frame <- model.frame(fit, data = fev_data, include = c("subject_var", "visit_var", "group_var", "response_var"), na.action = "na.pass" ) tmb_data <- h_mmrm_tmb_data( fit$formula_parts, full_frame, weights = rep(1, nrow(full_frame)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) sas_res_p <- c(44.9753553724207, 41.4074753229983) sas_res_p_sd <- c(7.07537882030293, 4.72199122235202) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-3) sas_res_p <- c(44.9753553724207, 41.4074753229983) sas_res_p_sd <- c(7.07537882030293, 4.72199122235202) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov_adj) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-3) }) test_that("predict gives same result with sas in toep satterthwaite", { fit <- mmrm(FEV1 ~ ARMCD + toep(AVISIT | USUBJID), data = fev_data) full_frame <- model.frame(fit, data = fev_data, include = c("subject_var", "visit_var", "group_var", "response_var"), na.action = "na.pass" ) tmb_data <- h_mmrm_tmb_data( fit$formula_parts, full_frame, weights = rep(1, nrow(full_frame)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) sas_res_p <- c(49.2972533971016, 32.5585487765097) sas_res_p_sd <- c(7.89495102841021, 7.32982693449642) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-3) }) test_that("predict gives same result with sas in ar1 satterthwaite/kenward-roger", { fit <- mmrm(FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger") full_frame <- model.frame(fit, data = fev_data, include = c("subject_var", "visit_var", "group_var", "response_var"), na.action = "na.pass" ) tmb_data <- h_mmrm_tmb_data( fit$formula_parts, full_frame, weights = rep(1, nrow(full_frame)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) sas_res_p <- c(42.7404650408987, 34.8347780646782) sas_res_p_sd <- c(8.469966361884, 7.88346546930503) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-3) sas_res_p <- c(42.7404650408987, 34.8347780646782) sas_res_p_sd <- c(8.50085016679827, 7.91455389252041) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov_adj) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-2) }) test_that("predict gives same result with sas in cs satterthwaite/kenward-roger", { fit <- mmrm(FEV1 ~ ARMCD + cs(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger") full_frame <- model.frame(fit, data = fev_data, include = c("subject_var", "visit_var", "group_var", "response_var"), na.action = "na.pass" ) tmb_data <- h_mmrm_tmb_data( fit$formula_parts, full_frame, weights = rep(1, nrow(full_frame)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) sas_res_p <- c(44.0595030539703, 44.0595030539703) sas_res_p_sd <- c(9.10525401644359, 9.10525401644359) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-3) sas_res_p <- c(44.0595030539703, 44.0595030539703) sas_res_p_sd <- c(9.13792825096229, 9.13792825096229) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov_adj) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-2) }) test_that("predict gives same result with sas in sp_exp satterthwaite/kenward-roger", { fit <- mmrm(FEV1 ~ ARMCD + sp_exp(VISITN, VISITN2 | USUBJID), data = fev_data, method = "Kenward-Roger") full_frame <- model.frame(fit, data = fev_data, include = c("subject_var", "visit_var", "group_var", "response_var"), na.action = "na.pass" ) tmb_data <- h_mmrm_tmb_data( fit$formula_parts, full_frame, weights = rep(1, nrow(full_frame)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) sas_res_p <- c(43.0487253094136, 41.7658999941086) sas_res_p_sd <- c(8.70129696071474, 8.78510718323017) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-3) sas_res_p <- c(43.0487253094136, 41.7658999941086) sas_res_p_sd <- c(8.73761421183867, 8.82021391504478) res <- h_get_prediction(tmb_data, fit$theta_est, fit$beta_est, fit$beta_vcov_adj) expect_equal(sas_res_p, res$prediction[c(1, 3), 1], tolerance = 1e-3) expect_equal(sas_res_p_sd, sqrt(res$prediction[c(1, 3), 3]), tolerance = 1e-2) }) # h_construct_model_frame_inputs ---- test_that("h_construct_model_frame_inputs works with all columns", { object <- get_mmrm_tmb() result <- expect_silent( h_construct_model_frame_inputs( formula = object, data = object$data |> head(), include = c("subject_var", "visit_var", "group_var", "response_var"), ) ) expect_equal( result$formula, FEV1 ~ RACE + USUBJID + AVISIT, ignore_attr = TRUE ) expect_equal( result$formula_full, FEV1 ~ RACE + USUBJID + AVISIT, ignore_attr = TRUE ) }) test_that("h_construct_model_frame_inputs works with response var selected", { object <- get_mmrm_tmb() result <- expect_silent( h_construct_model_frame_inputs( formula = object, data = object$data |> head(), include = "response_var", ) ) expect_equal( result$formula, FEV1 ~ RACE, ignore_attr = TRUE ) expect_equal( result$formula_full, FEV1 ~ RACE + USUBJID + AVISIT, ignore_attr = TRUE ) }) test_that("h_construct_model_frame_inputs works with include=NULL", { object <- get_mmrm_tmb() result <- expect_silent( h_construct_model_frame_inputs( formula = object, data = object$data |> head(), include = NULL, ) ) expect_equal( result$formula, ~RACE, ignore_attr = TRUE ) expect_equal( result$formula_full, FEV1 ~ RACE + USUBJID + AVISIT, ignore_attr = TRUE ) }) # model.frame ---- test_that("model.frame works as expected with defaults", { object <- get_mmrm_tmb() result <- expect_silent(model.frame(object, include = c("response_var", "visit_var"))) expect_data_frame(result, nrows = length(object$tmb_data$y_vector)) expect_named(result, c("FEV1", "RACE", "AVISIT")) expect_class(attr(result, "terms"), "terms") }) test_that("model.frame works as expected with includes", { object <- get_mmrm_tmb() result <- expect_silent(model.frame(object, include = c("response_var"))) expect_data_frame(result, nrows = length(object$tmb_data$y_vector)) expect_named(result, c("FEV1", "RACE")) expect_class(attr(result, "terms"), "terms") }) test_that("model.frame returns full model frame if requested", { object <- get_mmrm_tmb() result <- expect_silent(model.frame(object, include = c("response_var", "visit_var", "subject_var", "group_var"))) expect_data_frame(result, nrows = length(object$tmb_data$y_vector)) expect_named(result, c("FEV1", "RACE", "AVISIT", "USUBJID")) expect_class(attr(result, "terms"), "terms") }) test_that("model.frame works if variable transformed", { fit1 <- get_mmrm_transformed() result <- expect_silent(model.frame(fit1, include = c("response_var", "visit_var"))) expect_data_frame(result, nrows = length(fit1$tmb_data$y_vector)) expect_named(result, c("FEV1", "log(FEV1_BL)", "AVISIT")) expect_class(attr(result, "terms"), "terms") }) test_that("model.frame works for new data", { fit1 <- get_mmrm_transformed() result <- expect_silent(model.frame( fit1, data = fev_data[complete.cases(fev_data), ][1:20, ], include = c("response_var", "visit_var") )) expect_data_frame(result, nrows = 20L) expect_named(result, c("FEV1", "log(FEV1_BL)", "AVISIT")) expect_class(attr(result, "terms"), "terms") }) test_that("model.frame works if input x does not contain NA, y contains but not included", { fit1 <- get_mmrm_transformed() expect_silent( model.frame(fit1, data = na.omit(fit1$data), na.action = "na.fail") ) }) test_that("model.frame fails if y contains NA and is included", { fit1 <- get_mmrm_transformed() expect_error( model.frame(fit1, na.action = "na.fail", include = "response_var") ) }) test_that("model.frame makes the levels match", { fit1 <- get_mmrm() fev_data2 <- fev_data # changes the levels levels(fev_data2$AVISIT) <- c("VIS3", "VIS2", "VIS4", "VIS1") out_frame <- expect_silent( model.frame(fit1, data = fev_data2) ) expect_identical(levels(fev_data$AVISIT), levels(out_frame$AVISIT)) }) test_that("model.frame do not care about subject levels", { fit1 <- get_mmrm() fev_data2 <- fev_data fev_data2$USUBJID <- sprintf("%s_TEST", fev_data2$USUBJID) out_frame <- expect_silent( model.frame(fit1, data = fev_data2, include = "subject_var") ) expect_identical( # first remove missing obs from input data na.omit(fev_data2[all.vars(fit1$formula$formula)])$USUBJID, out_frame$USUBJID ) }) test_that("model.frame include all specified variables", { fit1 <- get_mmrm_group() out_frame <- expect_silent( model.frame(fit1, data = fev_data, include = "group_var") ) expect_identical(colnames(out_frame), "ARMCD") # formula already contains "ARMCD" out_frame <- expect_silent( model.frame(fit1, data = fev_data, include = "visit_var") ) expect_identical(colnames(out_frame), c("ARMCD", "AVISIT")) out_frame <- expect_silent( model.frame(fit1, data = fev_data, include = "subject_var") ) expect_identical(colnames(out_frame), c("ARMCD", "USUBJID")) out_frame <- expect_silent( model.frame(fit1, na.action = "na.pass", data = fev_data, include = "response_var") ) expect_identical(colnames(out_frame), c("FEV1", "ARMCD")) }) test_that("model.frame with character reference will return factors", { fev_data2 <- fev_data fev_data2$ARMCD <- as.character(fev_data2$ARMCD) fit <- mmrm(FEV1 ~ ARMCD + ar1(AVISIT | USUBJID), data = fev_data2) new_data <- subset(fev_data2, ARMCD == "TRT") new_frame <- expect_silent(model.frame(fit, data = new_data, include = c("subject_var", "visit_var", "response_var"))) expect_identical(levels(new_frame$ARMCD), c("PBO", "TRT")) expect_silent(h_mmrm_tmb_data( fit$formula_parts, new_frame, weights = rep(1, nrow(new_frame)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE )) # If we don't have the factorization in model.frame new_frame2 <- new_frame new_frame2$ARMCD <- as.character(new_frame2$ARMCD) expect_error(h_mmrm_tmb_data( fit$formula_parts, new_frame2, weights = rep(1, nrow(new_frame2)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ), "contrasts can be applied only to factors") }) # model.matrix ---- test_that("model.matrix works as expected with defaults", { object <- get_mmrm_tmb() result <- expect_silent(model.matrix(object)) expect_matrix(result, nrows = length(object$tmb_data$y_vector)) expect_equal( colnames(result), c("(Intercept)", "RACEBlack or African American", "RACEWhite") ) }) test_that("model.matrix works as expected with includes", { object <- get_mmrm_tmb() result <- expect_silent(model.matrix(object, include = c("visit_var"))) expect_matrix(result, nrows = length(object$tmb_data$y_vector)) expect_equal( colnames(result), c("(Intercept)", "RACEBlack or African American", "RACEWhite", "AVISITVIS2", "AVISITVIS3", "AVISITVIS4") ) }) test_that("model.matrix returns full model frame if requested", { object <- get_mmrm_tmb() result <- expect_silent(model.matrix(object, include = c("visit_var", "subject_var", "group_var"))) expect_matrix(result, nrows = length(object$tmb_data$y_vector)) # Expecting many columns for covariates and dummy cols for USUBJID. expect_equal( length(colnames(result)), 205L ) }) test_that("model.matrix works if variable transformed", { fit1 <- get_mmrm_transformed() result <- expect_silent(model.matrix(fit1, include = c("visit_var"))) expect_matrix(result, nrows = length(fit1$tmb_data$y_vector)) expect_equal( colnames(result), c("(Intercept)", "log(FEV1_BL)", "AVISITVIS2", "AVISITVIS3", "AVISITVIS4") ) }) test_that("model.matrix works for new data", { fit1 <- get_mmrm_transformed() result <- expect_silent(model.matrix( fit1, data = fev_data[complete.cases(fev_data), ][1:20, ], include = c("visit_var") )) expect_matrix(result, nrows = 20L) expect_equal( colnames(result), c("(Intercept)", "log(FEV1_BL)", "AVISITVIS2", "AVISITVIS3", "AVISITVIS4") ) }) test_that("model.matrix include all specified variables", { fit1 <- get_mmrm_group() out_frame <- expect_silent( model.matrix(fit1, data = fev_data, include = "group_var") ) expect_identical(colnames(out_frame), c("(Intercept)", "ARMCDTRT")) # formula already contains "ARMCD" out_frame <- expect_silent( model.matrix(fit1, data = fev_data, include = "visit_var") ) expect_identical(colnames(out_frame), c("(Intercept)", "ARMCDTRT", "AVISITVIS2", "AVISITVIS3", "AVISITVIS4")) }) # terms ---- test_that("terms works as expected with defaults", { object <- get_mmrm_tmb() result <- expect_silent(terms(object)) expect_equal( result, FEV1 ~ RACE, ignore_attr = TRUE ) }) # logLik ---- test_that("logLik works as expected", { object <- get_mmrm_tmb() result <- expect_silent(logLik(object)) expected <- -1821.19736 expect_equal(result, expected) }) # formula ---- test_that("formula works as expected", { object <- get_mmrm_tmb() result <- expect_silent(formula(object)) expected <- FEV1 ~ RACE + us(AVISIT | USUBJID) expect_false(identical(environment(result), environment(expected))) expect_equal(result, expected, ignore_attr = TRUE) }) # vcov ---- test_that("vcov works as expected", { object <- get_mmrm_tmb() result <- expect_silent(vcov(object)) expect_matrix(result, mode = "numeric") nms <- c("(Intercept)", "RACEBlack or African American", "RACEWhite") expect_names(rownames(result), identical.to = nms) expect_names(colnames(result), identical.to = nms) }) test_that("vcov works as expected for rank deficient model", { object <- get_mmrm_tmb_rank_deficient() result <- expect_silent(vcov(object)) expect_matrix(result, mode = "numeric") nms <- c("(Intercept)", "SEXFemale", "SEX2Female") expect_names(rownames(result), identical.to = nms) expect_names(colnames(result), identical.to = nms) result2 <- expect_silent(vcov(object, complete = FALSE)) nms2 <- c("(Intercept)", "SEXFemale") expect_names(rownames(result2), identical.to = nms2) expect_names(colnames(result2), identical.to = nms2) }) # VarCorr ---- test_that("VarCorr works as expected", { object <- get_mmrm_tmb() result <- expect_silent(VarCorr(object)) expect_matrix(result, mode = "numeric") nms <- c("VIS1", "VIS2", "VIS3", "VIS4") expect_names(rownames(result), identical.to = nms) expect_names(colnames(result), identical.to = nms) }) # deviance ---- test_that("deviance works as expected", { object <- get_mmrm_tmb() result <- expect_silent(deviance(object)) expected <- 3642.3947 expect_equal(result, expected) }) # AIC ---- test_that("AIC works as expected with defaults", { object <- get_mmrm_tmb() result <- expect_silent(AIC(object)) expected <- -2 * logLik(object) + 2 * length(object$theta_est) expect_equal(result, expected) }) test_that("AIC works as expected with different k", { object <- get_mmrm_tmb() result <- expect_silent(AIC(object, k = 5)) expected <- -2 * logLik(object) + 5 * length(object$theta_est) expect_equal(result, expected) }) test_that("corrected AIC works as expected", { object <- get_mmrm_tmb() result <- expect_silent(AIC(object, corrected = TRUE)) m <- nrow(object$tmb_data$x_matrix) - ncol(object$tmb_data$x_matrix) n_theta <- length(object$theta_est) multiplier <- m / (m - n_theta - 1) expected <- -2 * logLik(object) + 2 * length(object$theta_est) * multiplier expect_equal(result, expected) }) # BIC ---- test_that("BIC works as expected", { object <- get_mmrm_tmb() result <- expect_silent(BIC(object)) expected <- -2 * logLik(object) + log(object$tmb_data$n_subjects) * length(object$theta_est) expect_equal(result, expected) }) # print.mmrm_tmb ---- test_that("print.mmrm_tmb works as expected", { object_mmrm_tmb <- get_mmrm_tmb() expect_snapshot_output(print(object_mmrm_tmb), cran = FALSE) object_mmrm <- get_mmrm() expect_snapshot_output(print(object_mmrm), cran = FALSE) }) test_that("print.mmrm_tmb works as expected for rank deficient fits", { object_mmrm_tmb <- get_mmrm_tmb_rank_deficient() expect_snapshot_output(print(object_mmrm_tmb), cran = FALSE) }) # residuals.mmrm_tmb ---- test_that("residuals works as expected", { skip_if_r_devel_linux_clang() object <- get_mmrm() result_resp <- expect_silent(residuals(object, type = "response")) expect_double(result_resp, len = length(object$tmb_data$y_vector)) expect_equal( head(result_resp, 5), c(-1.2349, -31.6025, -4.1618, -4.2406, 2.9770), tolerance = 1e-3 ) result_pearson <- expect_silent(residuals(object, type = "pearson")) expect_double(result_pearson, len = length(object$tmb_data$y_vector)) expect_equal( head(result_pearson, 5), c(-0.23957, -3.23296, -0.80740, -1.09871, 0.30455), tolerance = 1e-3 ) result_norm <- expect_silent(residuals(object, type = "normalized")) expect_double(result_norm, len = length(object$tmb_data$y_vector)) expect_equal( head(result_norm, 5), c(-0.23957, -3.23322, -0.80740, -0.99548, 0.43232), tolerance = 1e-3 ) }) test_that("residuals works as expected with grouped covariance structure", { object <- get_mmrm_group() result_resp <- expect_silent(residuals(object, type = "response")) expect_double(result_resp, len = length(object$tmb_data$y_vector)) expect_equal( head(result_resp, 5), c(-4.7084, -24.1957, -9.6965, -4.2728, 7.6564), tolerance = 1e-3 ) result_pearson <- expect_silent(residuals(object, type = "pearson")) expect_double(result_pearson, len = length(object$tmb_data$y_vector)) expect_equal( head(result_pearson, 5), c(-0.73835, -1.83991, -1.53172, -0.88145, 0.66653), tolerance = 1e-3 ) result_norm <- expect_silent(residuals(object, type = "normalized")) expect_double(result_norm, len = length(object$tmb_data$y_vector)) expect_equal( head(result_norm, 5), c(-0.73835, -1.88475, -1.53172, -1.02026, 0.54335), tolerance = 1e-3 ) }) test_that("residuals works as expected with weighted model fit", { skip_if_r_devel_linux_clang() object <- get_mmrm_weighted() result_resp <- expect_silent(residuals(object, type = "response")) expect_double(result_resp, len = length(object$tmb_data$y_vector)) expect_equal( head(result_resp, 5), c(-1.3356, -31.6028, -3.7467, -3.9470, 2.8818), tolerance = 1e-3 ) result_pearson <- expect_silent(residuals(object, type = "pearson")) expect_double(result_pearson, len = length(object$tmb_data$y_vector)) expect_equal( head(result_pearson, 5), c(-0.29917, -4.07046, -0.51393, -1.01538, 0.37118), tolerance = 1e-3 ) result_norm <- expect_silent(residuals(object, type = "normalized")) expect_double(result_norm, len = length(object$tmb_data$y_vector)) expect_equal( head(result_norm, 5), c(-0.29917, -4.07727, -0.51393, -0.96419, 0.45466), tolerance = 1e-3 ) }) test_that("residuals works as expected with a model using spatial covariance structure", { object <- get_mmrm_spatial() result_resp <- expect_silent(residuals(object, type = "response")) expect_double(result_resp, len = length(object$tmb_data$y_vector)) expect_equal( head(result_resp, 5), c(-4.5428, -24.0301, -8.8329, -3.4092, 8.5200), tolerance = 1e-3 ) result_normal <- residuals(object, type = "normalized") expect_equal( head(result_normal, 5), c(-0.4943, -2.5698, -0.9613, 0.0046, 1.1645), tolerance = 1e-3 ) result_pearson <- residuals(object, type = "normalized") expect_equal( head(result_pearson, 5), c(-0.4944, -2.5699, -0.9613, 0.0046, 1.1645), tolerance = 1e-3 ) }) test_that("pearson residuals helper function works as expected", { skip_if_r_devel_linux_clang() object <- get_mmrm() resid_response <- residuals(object, type = "response") result_pearson <- h_residuals_pearson(object) expect_double(result_pearson, len = length(object$tmb_data$y_vector)) expect_equal( tail(result_pearson, 5), c(2.22057, 1.79050, 0.53322, 0.87243, 0.70477), tolerance = 1e-3 ) }) test_that("normalized residuals helper function works as expected", { skip_if_r_devel_linux_clang() object <- get_mmrm() result_norm <- h_residuals_normalized(object) expect_double(result_norm, len = length(object$tmb_data$y_vector)) expect_equal( tail(result_norm, 5), c(1.99092, 1.49689, 0.53322, 0.71055, 0.56152), tolerance = 1e-3 ) }) test_that("response residuals helper function works as expected", { object <- get_mmrm() result_rsp <- h_residuals_response(object) expect_double(result_rsp, len = length(object$tmb_data$y_vector)) expected <- component(object, "y_vector") - as.vector(fitted(object)) expect_equal(result_rsp, expected) }) # simulate.mmrm_tmb ---- test_that("simulate works if the model reponse is an expression", { object <- mmrm(log(FEV1) + FEV1 ~ ARMCD * AVISIT + ar1(AVISIT | USUBJID), data = fev_data) set.seed(1001) sims <- simulate(object, nsim = 2, method = "conditional") expect_data_frame(sims, any.missing = FALSE, nrows = nrow(object$data), ncols = 2) }) test_that("simulate with conditional method returns a df of correct dimension", { object <- get_mmrm() set.seed(1001) sims <- simulate(object, nsim = 2, method = "conditional") expect_data_frame(sims, any.missing = FALSE, nrows = nrow(object$data), ncols = 2) set.seed(202) sims <- simulate(object, nsim = 1, method = "conditional") expect_data_frame(sims, any.missing = FALSE, nrows = nrow(object$data), ncols = 1) }) test_that("simulate with marginal method returns a df of correct dimension", { object <- get_mmrm() set.seed(1001) sims <- simulate(object, nsim = 2, method = "marginal") expect_data_frame(sims, any.missing = FALSE, nrows = nrow(object$data), ncols = 2) set.seed(202) sims <- simulate(object, nsim = 1, method = "marginal") expect_data_frame(sims, any.missing = FALSE, nrows = nrow(object$data), ncols = 1) }) test_that("simulate with conditional method results are correctly centered", { object <- get_mmrm() set.seed(323) sims <- simulate(object, nsim = 1000, method = "conditional") expect_equal(rowMeans(sims), predict(object), tolerance = 1e-2) }) test_that("simulate with marginal method results are correctly centered", { object <- get_mmrm() set.seed(323) sims <- simulate(object, nsim = 100, method = "marginal") expect_equal(rowMeans(sims), predict(object), tolerance = 1e-1) }) test_that("simulate with conditional method works as expected for weighted models", { skip_if_r_devel_linux_clang() object <- get_mmrm_weighted() set.seed(535) sims <- simulate(object, nsim = 1000, method = "conditional") expect_equal(rowMeans(sims), predict(object), tolerance = 1e-2) }) test_that("simulate with marginal method works as expected for weighted models", { object <- get_mmrm_weighted() set.seed(535) sims <- simulate(object, nsim = 100, method = "marginal") expect_equal(rowMeans(sims), predict(object), tolerance = 1e-1) }) test_that("simulate with conditional method works as expected for grouped fits", { object <- get_mmrm_group() set.seed(737) sims <- simulate(object, nsim = 1000, method = "conditional") expect_equal(rowMeans(sims), predict(object), tolerance = 1e-2) }) test_that("simulate with marginal method works as expected for grouped fits", { object <- get_mmrm_group() set.seed(737) sims <- simulate(object, nsim = 100, method = "marginal") expect_equal(rowMeans(sims), predict(object), tolerance = 1e-1) }) test_that("simulate with conditional method works for differently ordered/numbered data", { object <- get_mmrm() # Look at a permuted small subset of the original data. df_subset <- dplyr::slice(object$data, 1:10) neworder <- sample(nrow(df_subset)) df_mixed <- df_subset[neworder, ] set.seed(939) sims <- simulate(object, nsim = 1000, newdata = df_mixed, method = "conditional") expect_equal(rowMeans(sims), predict(object, df_mixed), tolerance = 1e-2) }) test_that("simulate with marginal method works for differently ordered/numbered data", { skip_if_r_devel_linux_clang() object <- get_mmrm() # Look at a permuted small subset of the original data. df_subset <- dplyr::slice(object$data, 1:10) neworder <- sample(nrow(df_subset)) df_mixed <- df_subset[neworder, ] set.seed(939) sims <- simulate(object, nsim = 100, newdata = df_mixed, method = "marginal") expect_equal(rowMeans(sims), predict(object, df_mixed), tolerance = 1e-2) }) test_that("simulate with conditional method is compatible with confidence intervals", { object <- get_mmrm() # Note that observed y have se = 0 here. So we only look at # unobserved y predictions. is_unobserved <- is.na(fev_data$FEV1) intervals <- predict( object, newdata = fev_data, se.fit = TRUE, interval = "confidence", level = 0.95 ) expect_true(all(intervals[is_unobserved, "se"] > 0)) sims <- simulate( object, newdata = fev_data, nsim = 10000, method = "conditional" ) result_mean <- apply(sims, 1, mean) expected <- intervals[, "fit"] expect_equal(result_mean, expected, tolerance = 1e-2) }) test_that("simulate with marginal method is compatible with prediction intervals", { skip_if_r_devel_linux_clang() object <- get_mmrm() set.seed(123) intervals <- predict( object, se.fit = TRUE, interval = "prediction", level = 0.95, nsim = 100 ) sims <- simulate( object, nsim = 100, method = "marginal" ) sims_quantiles <- t(apply(sims, 1, quantile, probs = c(0.025, 0.975))) expect_equal(sims_quantiles[, "2.5%"], intervals[, "lwr"], tolerance = 1e-1) expect_equal(sims_quantiles[, "97.5%"], intervals[, "upr"], tolerance = 1e-1) }) test_that("we calculate correctly w_sample", { object <- get_mmrm() set.seed(654) z_sample <- rnorm(length(object$beta_est)) result <- backsolve( r = object$beta_vcov_inv_L, x = z_sample / sqrt(object$beta_vcov_inv_D), upper.tri = FALSE, transpose = TRUE ) expected <- as.numeric( solve(t(object$beta_vcov_inv_L)) %*% diag(1 / sqrt(object$beta_vcov_inv_D)) %*% z_sample ) expect_equal(result, expected) }) # h_get_sim_per_subj ---- test_that("h_get_sim_per_subj returns no error for nsim == 1", { object <- get_mmrm() # Format data.frame to inherit from 'mmrm_tmb_data'. tmb_data <- h_mmrm_tmb_data( object$formula_parts, object$data, weights = rep(1, nrow(object$data)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) mu <- h_get_prediction(tmb_data, object$theta_est, object$beta_est, object$beta_vcov) expect_no_error(h_get_sim_per_subj(mu, object$tmb_data$n_subjects, nsim = 1)) }) test_that("h_get_sim_per_subj returns no error for nsub == 1", { object <- get_mmrm() # Format data.frame to inherit from 'mmrm_tmb_data'. tmb_data <- h_mmrm_tmb_data( object$formula_parts, object$data, weights = rep(1, nrow(object$data)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) mu <- h_get_prediction(tmb_data, object$theta_est, object$beta_est, object$beta_vcov) expect_no_error(h_get_sim_per_subj(mu, 1, nsim = 10)) }) test_that("h_get_sim_per_subj returns no error for data.frame with 1 row", { object <- get_mmrm() # Format data.frame to inherit from 'mmrm_tmb_data'. tmb_data <- h_mmrm_tmb_data( object$formula_parts, object$data[1, ], weights = rep(1, nrow(object$data[1, ])), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) mu <- h_get_prediction(tmb_data, object$theta_est, object$beta_est, object$beta_vcov) expect_no_error(h_get_sim_per_subj(mu, 1, nsim = 10)) }) test_that("h_get_sim_per_subj results match expectation for large nsim", { object <- get_mmrm() # Format data.frame to inherit from 'mmrm_tmb_data'. tmb_data <- h_mmrm_tmb_data( object$formula_parts, object$data, weights = rep(1, nrow(object$data)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) mu <- h_get_prediction(tmb_data, object$theta_est, object$beta_est, object$beta_vcov) results <- h_get_sim_per_subj(mu, object$tmb_data$n_subjects, nsim = 1000) expect_equal(rowMeans(results), mu$prediction[, 1], tolerance = 1e-1) }) test_that("h_get_sim_per_subj throws error for nsim == 0", { object <- get_mmrm() # Format data.frame to inherit from 'mmrm_tmb_data'. tmb_data <- h_mmrm_tmb_data( object$formula_parts, object$data[1, ], weights = rep(1, nrow(object$data[1, ])), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) mu <- h_get_prediction(tmb_data, object$theta_est, object$beta_est, object$beta_vcov) expect_error(h_get_sim_per_subj(mu, object$tmb_data$n_subjects, nsim = 0)) }) test_that("h_get_sim_per_subj throws error for nsub == 0", { object <- get_mmrm() # Format data.frame to inherit from 'mmrm_tmb_data'. tmb_data <- h_mmrm_tmb_data( object$formula_parts, object$data[1, ], weights = rep(1, nrow(object$data[1, ])), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) mu <- h_get_prediction(tmb_data, object$theta_est, object$beta_est, object$beta_vcov) expect_error(h_get_sim_per_subj(mu, 0, nsim = 10)) }) # h_get_prediction_variance ---- test_that("h_get_prediction_variance works as expected", { skip_if_r_devel_linux_clang() fit <- get_mmrm() data <- fev_data[c(1:4, 97:100), ] full_frame <- model.frame(fit, data = data, include = c("subject_var", "visit_var", "group_var", "response_var"), na.action = "na.pass" ) tmb_data <- h_mmrm_tmb_data( fit$formula_parts, full_frame, weights = rep(1, nrow(full_frame)), reml = TRUE, singular = "keep", drop_visit_levels = FALSE, allow_na_response = TRUE, drop_levels = FALSE ) expect_silent(res <- h_get_prediction_variance(fit, 1000L, tmb_data)) expect_equal( res, c(37.10, 0, 17.04, 0, 0, 0, 0, 0), tolerance = 1e-1 ) })