library("mlt") library("survival") set.seed(290875) chk <- function(x, y) stopifnot(all.equal(x, y, tol = 1e-4, check.attributes = FALSE)) ### check -Inf, Inf interval censoring for handling missing ### response values ### numeric response N <- 100 x <- rnorm(N) ina <- sample(1:length(x))[1:floor(N / 10)] x[ina] <- NA d <- data.frame(x = x) d$Rx <- d$Rxi <- R(x) d$Rxi$cleft <- -Inf d$Rxi$cright <- Inf d$Rx2 <- R(x, as.R.interval = TRUE) m <- mlt(ctm(response = Bernstein_basis(numeric_var("x"), order = 1)), data = d[-ina,,drop = FALSE]) mx <- mlt(ctm(response = Bernstein_basis(numeric_var("x"), order = 1)), data = d) mRx <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx"), order = 1)), data = d) mRxi <- mlt(ctm(response = Bernstein_basis(numeric_var("Rxi"), order = 1)), data = d) mRx2 <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx2"), order = 1)), data = d) mx2 <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx2"), order = 1)), data = d[-ina,,drop = FALSE]) chk(coef(mx), coef(m)) chk(coef(mRx), coef(m)) chk(coef(mRxi), coef(m)) chk(logLik(mx), logLik(m)) chk(logLik(mRx), logLik(m)) chk(logLik(mRxi), logLik(m)) chk(coef(mRx2), coef(mx2)) chk(logLik(mRx2), logLik(mx2)) ### ordered factors x <- gl(4, N, ordered = TRUE) x[ina] <- NA d <- data.frame(x = x) m <- mlt(ctm(response = as.basis(d$x)), data = d[-ina,,drop = FALSE]) mx <- mlt(ctm(response = as.basis(d$x)), data = d) chk(coef(m), coef(mx)) chk(logLik(m), logLik(mx)) ### integers x <- sample(1:N) x[ina] <- NA d <- data.frame(x = x) d$Rx <- R(x) mx <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx"), order = 1)), data = d) mx2 <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx"), order = 1)), data = d[-ina,,drop = FALSE]) chk(coef(mx), coef(mx2)) chk(logLik(mx), logLik(mx2)) ### survival x <- exp(rnorm(N)) x[ina] <- NA ### right censoring d <- data.frame(y = Surv(x, event = x > 1)) tol <- sqrt(.Machine$double.eps) m <- mlt(ctm(response = Bernstein_basis( numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), order = 1, log_first = TRUE)), data = d[-ina,,drop = FALSE]) mx <- mlt(ctm(response = Bernstein_basis( numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), order = 1, log_first = TRUE)), data = d) chk(coef(m), coef(mx)) chk(logLik(m), logLik(mx)) ### left censoring d <- data.frame(y = Surv(x, event = x > 1, type = "left")) tol <- sqrt(.Machine$double.eps) m <- mlt(ctm(response = Bernstein_basis( numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), order = 1, log_first = TRUE)), data = d[-ina,,drop = FALSE]) mx <- mlt(ctm(response = Bernstein_basis( numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), order = 1, log_first = TRUE)), data = d) chk(coef(m), coef(mx)) chk(logLik(m), logLik(mx)) ### empirical likelihood d$y <- R(Surv(x, event = x > 1), as.R.interval = TRUE) m <- mlt(ctm(response = Bernstein_basis( numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), order = 1, log_first = TRUE)), data = d[-ina,,drop = FALSE]) mx <- mlt(ctm(response = Bernstein_basis( numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), order = 1, log_first = TRUE)), data = d) chk(coef(m), coef(mx)) chk(logLik(m), logLik(mx))