R Under development (unstable) (2024-11-15 r87338 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library("mlt") Loading required package: basefun Loading required package: variables > library("sandwich") > set.seed(29) > options(digits = 5) > > ### Nadja Klein > dat <- data.frame(matrix(rnorm(300),ncol=3)) > names(dat) <- c("y","x1","x2") > ### set-up conditional transformation model for conditional > y <- numeric_var("y", support = c(min(dat$y), max(dat$y)), bounds = c(-Inf, Inf)) > x1 <- numeric_var("x1", support = c(min(dat$x1), max(dat$x1)), bounds = c(-Inf, Inf)) > x2 <- numeric_var("x2", support = c(min(dat$x2), max(dat$x2)), bounds = c(-Inf, Inf)) > ctmm2 <- ctm(response = Bernstein_basis(y, order = 4, ui = "increasing"), + interacting = c(x1=Bernstein_basis(x1, order = 3), + x2=Bernstein_basis(x2, order= 3))) > ### fit model > mltm2 <- mlt(ctmm2, data = dat, scale = TRUE) > round(p <- predict(mltm2, newdata = data.frame(x1=0, x2 = 0), q = mkgrid(mltm2, n = 10)[["y"]]), 2) y [,1] -2.43 -2.43 -1.92 -1.78 -1.4 -1.17 -0.89 -0.61 -0.375 -0.11 0.139 0.33 0.654 0.75 1.17 1.19 1.68 1.71 2.2 2.41 > ### plot data > plot(mltm2,newdata=expand.grid(x1=0:1, x2 = 0:1)) > > ### check update > dist <- numeric_var("dist", support = c(2.0, 100), bounds = c(0, Inf)) > speed <- numeric_var("speed", support = c(5.0, 23), bounds = c(0, Inf)) > ctmm <- ctm(response = Bernstein_basis(dist, order = 4, ui = "increasing"), + interacting = Bernstein_basis(speed, order = 3)) > > m <- mlt(ctmm, data = cars) > e <- estfun(m) > w <- runif(nrow(cars)) < .8 > m1 <- update(m, weights = w, theta = coef(m)) > e1 <- estfun(m1, parm = coef(m)) > stopifnot(max(abs(e * w - e1)) < .Machine$double.eps) > e1 <- estfun(m1) > m2 <- mlt(ctmm, data = cars[w > 0,], theta = coef(m)) > stopifnot(isTRUE(all.equal(logLik(m1), logLik(m2)))) > stopifnot(isTRUE(all.equal(logLik(m1, coef(m2)), logLik(m2, coef(m1))))) > e2 <- estfun(m2, parm = coef(m1)) > stopifnot(max(abs(e1[w > 0,] - e2)) < .Machine$double.eps) > > ### Muriel Buri > data("bodyfat", package = "TH.data") > set.seed(29) > > y <- numeric_var("DEXfat", support = c(15, 45), bounds = c(10, 64)) > basis_y <- Bernstein_basis(y, order = 2, ui = "incre") > x <- names(bodyfat)[-2] > xfm <- as.formula(paste("~", x, collapse = "+")) > m <- ctm(basis_y, shift = xfm, data = bodyfat) > mod <- mlt(m, data = bodyfat, scale = TRUE) > summary(mod) Call: mlt(model = m, data = bodyfat, scale = TRUE) Type: continuous linear transformation model (transformed normal distribution) Log-Likelihood: -171.14 (df = 12) Coefficients: 30.951 38.885 42.523 -0.01508 -0.058906 -0.12136 -0.054061 -0.47698 -0.34424 -2.4143 -1.1319 0.36928 > > ### parm can be a matrix with subject-specific parameters > parm <- matrix(coef(mod), nrow = 1L) > parm <- parm[rep(1, NROW(bodyfat)),] > all.equal(logLik(mod), logLik(mod, parm = parm)) [1] TRUE > all.equal(estfun(mod), estfun(mod, parm = parm)) [1] TRUE > > ### check for only left/right censoring before fitting > y <- bodyfat$DEXfat > sF <- rep(FALSE, length(y)) > library("survival") > bodyfat$DEXfat <- Surv(y, sF) > mod <- mlt(m, data = bodyfat, scale = TRUE) > mod$convergence [1] 1 > > > ### just in case: check for new intercept_basis (basefun 0.0-39) > d <- data.frame(y = rnorm(100, mean = 2, sd = .25)) > m <- ctm(as.basis(~ y, data = d, remove_intercept = TRUE, ui = matrix(1), ci = 0), + shifting = intercept_basis(), todistr = "Normal") > f <- mlt(m, data = d, scale = TRUE) > > m2 <- ctm(as.basis(~ y, data = d, ui = matrix(c(0, 1), nr = 1), ci = 0), todistr = "Normal") > f2 <- mlt(m2, data = d, scale = TRUE) > stopifnot(all.equal(coef(f), coef(f2)[2:1], check.attributes = FALSE)) > stopifnot(all.equal(logLik(f), logLik(f2))) > stopifnot(all.equal(estfun(f), estfun(f2)[,2:1], check.attributes = FALSE)) > > ### new shortcut > x <- rnorm(100) > stopifnot(all.equal(mlt:::.Normal()$dd2d(x), + mlt:::.Normal()$dd(x) / mlt:::.Normal()$d(x))) > stopifnot(all.equal(mlt:::.Logistic()$dd2d(x), + mlt:::.Logistic()$dd(x) / mlt:::.Logistic()$d(x))) > stopifnot(all.equal(mlt:::.MinExtrVal()$dd2d(x), + mlt:::.MinExtrVal()$dd(x) / mlt:::.MinExtrVal()$d(x))) > > ### multiple fixed parameters > y <- rnorm(100) > x <- runif(100) > d <- data.frame(y = y, x = x) > m <- ctm(as.basis(~ y, data = d, ui = matrix(c(0, 1), nr = 1), ci = 0), + shifting = ~ x, data = d) > cf <- coef(mlt(m, data = d, fixed = c("x" = 1, "(Intercept)" = .5))) > stopifnot(all.equal(cf[c("(Intercept)", "x")], + c("(Intercept)" = .5, "x" = 1))) > > ### by Balint Tamasi > exact <- c(1, NA, NA) > cleft <- c(NA, 2, -Inf) > cright <- c(NA, Inf, 3) > (resp <- R(exact, cleft = cleft, cright = cright)) [1] 1 ( 2, Inf] (-Inf, 3] > ### was not the same > (surv <- as.Surv(resp)) [1] 1 2+ 3- > > ### fixed but increasing parameters > ### was always right in mlt() but test was missing > dist <- numeric_var("dist", support = c(2.0, 100), bounds = c(0, Inf)) > speed <- numeric_var("speed", support = c(5.0, 23), bounds = c(0, Inf)) > ctmm <- ctm(response = Bernstein_basis(dist, order = 6, ui = "increasing")) > m1 <- mlt(ctmm, data = cars) > m2 <- mlt(ctmm, data = cars, fixed = coef(m1)[4]) > all.equal(c(logLik(m1)), c(logLik(m2))) [1] TRUE > > ### mix of left / right censoring with missing values coded as -Inf, Inf > N <- 50 > xl <- runif(N) > xr <- xl + 1 > lc <- 1:5 > xl[lc] <- -Inf > rc <- 6:10 > xr[rc] <- Inf > ic <- 11:15 > xl[ic] <- -Inf > xr[ic] <- Inf > > d <- data.frame(1:N) > d$y <- R(cleft = xl, cright = xr) > m <- mlt(ctm(response = Bernstein_basis(numeric_var("y", bounds = c(0, 1)), order = 1)), + data = d, theta = c(-1, 1)) > mi <- mlt(ctm(response = Bernstein_basis(numeric_var("y", bounds = c(0, 1)), order = 1)), + data = d[-ic,,drop = FALSE], theta = c(-1, 1)) > all.equal(logLik(m), logLik(mi)) [1] TRUE > > > > > > proc.time() user system elapsed 2.48 0.34 2.81