R Under development (unstable) (2024-09-21 r87186 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library("mlt") Loading required package: basefun Loading required package: variables > library("survival") > > set.seed(290875) > > chk <- function(x, y) stopifnot(all.equal(x, y, tol = 1e-4, check.attributes = FALSE)) > > ### check -Inf, Inf interval censoring for handling missing > ### response values > ### numeric response > N <- 100 > x <- rnorm(N) > ina <- sample(1:length(x))[1:floor(N / 10)] > x[ina] <- NA > > d <- data.frame(x = x) > d$Rx <- d$Rxi <- R(x) > d$Rxi$cleft <- -Inf > d$Rxi$cright <- Inf > d$Rx2 <- R(x, as.R.interval = TRUE) > > m <- mlt(ctm(response = Bernstein_basis(numeric_var("x"), order = 1)), + data = d[-ina,,drop = FALSE]) > mx <- mlt(ctm(response = Bernstein_basis(numeric_var("x"), order = 1)), + data = d) > mRx <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx"), order = 1)), + data = d) > mRxi <- mlt(ctm(response = Bernstein_basis(numeric_var("Rxi"), order = 1)), + data = d) > mRx2 <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx2"), order = 1)), + data = d) > mx2 <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx2"), order = 1)), + data = d[-ina,,drop = FALSE]) > > chk(coef(mx), coef(m)) > chk(coef(mRx), coef(m)) > chk(coef(mRxi), coef(m)) > > chk(logLik(mx), logLik(m)) > chk(logLik(mRx), logLik(m)) > chk(logLik(mRxi), logLik(m)) > > chk(coef(mRx2), coef(mx2)) > > chk(logLik(mRx2), logLik(mx2)) > > ### ordered factors > x <- gl(4, N, ordered = TRUE) > x[ina] <- NA > d <- data.frame(x = x) > > m <- mlt(ctm(response = as.basis(d$x)), + data = d[-ina,,drop = FALSE]) > > mx <- mlt(ctm(response = as.basis(d$x)), + data = d) > > chk(coef(m), coef(mx)) > > chk(logLik(m), logLik(mx)) > > ### integers > x <- sample(1:N) > x[ina] <- NA > d <- data.frame(x = x) > d$Rx <- R(x) > > mx <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx"), order = 1)), + data = d) > > mx2 <- mlt(ctm(response = Bernstein_basis(numeric_var("Rx"), order = 1)), + data = d[-ina,,drop = FALSE]) > > chk(coef(mx), coef(mx2)) > > chk(logLik(mx), logLik(mx2)) > > ### survival > x <- exp(rnorm(N)) > x[ina] <- NA > > ### right censoring > d <- data.frame(y = Surv(x, event = x > 1)) > tol <- sqrt(.Machine$double.eps) > m <- mlt(ctm(response = Bernstein_basis( + numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), + order = 1, log_first = TRUE)), + data = d[-ina,,drop = FALSE]) > mx <- mlt(ctm(response = Bernstein_basis( + numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), + order = 1, log_first = TRUE)), + data = d) > > chk(coef(m), coef(mx)) > > chk(logLik(m), logLik(mx)) > > ### left censoring > d <- data.frame(y = Surv(x, event = x > 1, type = "left")) > tol <- sqrt(.Machine$double.eps) > m <- mlt(ctm(response = Bernstein_basis( + numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), + order = 1, log_first = TRUE)), + data = d[-ina,,drop = FALSE]) > mx <- mlt(ctm(response = Bernstein_basis( + numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), + order = 1, log_first = TRUE)), + data = d) > > chk(coef(m), coef(mx)) > > chk(logLik(m), logLik(mx)) > > ### empirical likelihood > d$y <- R(Surv(x, event = x > 1), as.R.interval = TRUE) > m <- mlt(ctm(response = Bernstein_basis( + numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), + order = 1, log_first = TRUE)), + data = d[-ina,,drop = FALSE]) > mx <- mlt(ctm(response = Bernstein_basis( + numeric_var("y", bounds = c(tol, Inf), support = c(tol, 10)), + order = 1, log_first = TRUE)), + data = d) > > chk(coef(m), coef(mx)) > > chk(logLik(m), logLik(mx)) > > proc.time() user system elapsed 2.06 0.32 2.32