R Under development (unstable) (2023-06-29 r84618 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library("MASS") > > mp <- polr(Sat ~ Infl, weights = Freq, data = housing) > > library("mlt") Loading required package: basefun Loading required package: variables > > s <- as.basis(~ Infl, data = housing, remove_intercept = TRUE) > r <- as.basis(housing$Sat) > #r <- as.basis(~ Sat, data = housing, remove_intercept = TRUE, > # contrasts.arg = list(Sat = function(n) > # contr.treatment(n, base = 3)), > # ui = diff(diag(2)), ci = 0) > > m <- ctm(r, shift = s, todist = "Logi") > > mod <- mlt(m, data = housing, weights = housing$Freq) > > logLik(mp) 'log Lik.' -1771.708 (df=4) > logLik(mod) 'log Lik.' -1771.708 (df=4) > > coef(mp) InflMedium InflHigh 0.5635756 1.2486832 > mp$zeta Low|Medium Medium|High -0.2013727 0.9484658 > ### PR#17616 > unname(coef(mod)) [1] -0.2013745 0.9484782 -0.5635842 -1.2486779 > > sqrt(diag(vcov(mp))) Re-fitting to get Hessian InflMedium InflHigh Low|Medium Medium|High 0.10357053 0.12479361 0.07662596 0.08024304 > unname(sqrt(diag(vcov(mod)))) [1] 0.07662595 0.08024303 0.10357053 0.12479363 > > mp <- polr(Sat ~ Infl, weights = Freq, data = housing, method = "loglog") > > s <- as.basis(~ Infl, data = housing, remove_intercept = TRUE) > r <- as.basis(housing$Sat) > m <- ctm(r, shift = s, todist = "MaxExtrVal") > > mod <- mlt(m, data = housing, weights = housing$Freq) > > logLik(mp) 'log Lik.' -1776.416 (df=4) > logLik(mod) 'log Lik.' -1776.416 (df=4) > > coef(mp) InflMedium InflHigh 0.3851078 0.7837681 > mp$zeta Low|Medium Medium|High 0.2425732 1.0315129 > unname(coef(mod)) [1] 0.2425772 1.0315177 -0.3851189 -0.7837785 > > sqrt(diag(vcov(mp))) Re-fitting to get Hessian InflMedium InflHigh Low|Medium Medium|High 0.07219408 0.07953692 0.05453940 0.06090649 > unname(sqrt(diag(vcov(mod)))) [1] 0.05453958 0.06090668 0.07219424 0.07953700 > > mp <- polr(Sat ~ Infl, weights = Freq, data = housing, method = "cloglog") > > s <- as.basis(~ Infl, data = housing, remove_intercept = TRUE) > r <- as.basis(housing$Sat) > m <- ctm(r, shift = s, todist = "MinExtrVal") > > mod <- mlt(m, data = housing, weights = housing$Freq) > > logLik(mp) 'log Lik.' -1772.924 (df=4) > logLik(mod) 'log Lik.' -1772.924 (df=4) > > coef(mp) InflMedium InflHigh 0.3662567 0.8792058 > mp$zeta Low|Medium Medium|High -0.5679040 0.2655082 > unname(coef(mod)) [1] -0.5679043 0.2655074 -0.3662565 -0.8792066 > > sqrt(diag(vcov(mp))) Re-fitting to get Hessian InflMedium InflHigh Low|Medium Medium|High 0.06980195 0.09157487 0.05441248 0.04894207 > unname(sqrt(diag(vcov(mod)))) [1] 0.05441250 0.04894209 0.06980196 0.09157492 > > mp <- polr(Sat ~ Infl, weights = Freq, data = housing, method = "probit") > > s <- as.basis(~ Infl, data = housing, remove_intercept = TRUE) > r <- as.basis(housing$Sat) > m <- ctm(r, shift = s, todist = "Normal") > > mod <- mlt(m, data = housing, weights = housing$Freq) > > logLik(mp) 'log Lik.' -1772.056 (df=4) > logLik(mod) 'log Lik.' -1772.056 (df=4) > > coef(mp) InflMedium InflHigh 0.3465900 0.7608878 > mp$zeta Low|Medium Medium|High -0.1246930 0.5834263 > unname(coef(mod)) [1] -0.1246927 0.5834267 -0.3465902 -0.7608882 > > sqrt(diag(vcov(mp))) Re-fitting to get Hessian InflMedium InflHigh Low|Medium Medium|High 0.06360385 0.07529229 0.04741187 0.04867417 > unname(sqrt(diag(vcov(mod)))) [1] 0.04741187 0.04867418 0.06360385 0.07529229 > > proc.time() user system elapsed 2.07 0.20 2.25