R Under development (unstable) (2023-08-27 r85021 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > library("mlt") Loading required package: basefun Loading required package: variables > library("eha") > library("survival") > set.seed(29) > > ## ************** Exponential - AFT ********************************* > > ### true dgp > rY <- function(n, ...) rexp(n, ...) > pY <- function(x, ...) pexp(x, ...) > dY <- function(x, ...) dexp(x, ...) > > gf <- gl(3, 1) > g <- rep(gf, 100) > y <- rY(length(g), rate = (1:nlevels(g))[g]) > mydata <- data.frame(y = y, g = g) > > boxplot(y ~ g, data = mydata) > > Bb <- log_basis(numeric_var("y", support = range(y)), ui = "increasing", + remove_intercept = TRUE) > Bx <- as.basis(~ g, data = mydata) > m <- ctm(Bb, shifting = Bx, todist = "MinExtrVal") > > ## Estimate coefficients > coef(opt <- mlt(m, data = mydata, fixed = c("log(y)" = 1))) log(y) (Intercept) g2 g3 1.0000000 -0.1230066 0.7915161 1.1190543 > > coef(aft <- survreg(Surv(y, rep(TRUE, nrow(mydata))) ~ g, data = mydata, + dist = "exponential")) (Intercept) g2 g3 0.1230066 -0.7915161 -1.1190543 > > coef(cox <- coxph(Surv(y, rep(TRUE, nrow(mydata))) ~ g, data = mydata)) g2 g3 0.699808 1.022699 > > coef(phreg <- phreg(Surv(y, rep(TRUE, nrow(mydata))) ~ g, data = mydata, + dist = "weibull", shape = 1)) g2 g3 log(scale) 0.7915161 1.1190543 0.1230066 > > ## Compare standard errors > ## MLT > sqrt(diag(vcov(opt)))[c("g2", "g3")] g2 g3 0.1414214 0.1414214 > ## Cox > sqrt(diag(vcov(cox))) g2 g3 0.1523056 0.1557383 > ## phreg > sqrt(diag(phreg$var))[c("g2", "g3")] g2 g3 0.1414214 0.1414214 > > ## Compare log-Likelihoods > logLik(aft) 'log Lik.' -145.845 (df=3) > logLik(opt) 'log Lik.' -145.845 (df=3) > > > ## Use a Weibull-AFT for estimation (Weibull shape parameter should be nu = 1) > > ## Estimate coefficients > (cf <- coef(opt2 <- mlt(m, data = mydata))) log(y) (Intercept) g2 g3 0.92384441 -0.07596598 0.72339973 1.02745353 > cf[-1] / cf[1] (Intercept) g2 g3 -0.08222811 0.78303199 1.11214996 > > coef(aft2 <- survreg(Surv(y, rep(TRUE, nrow(mydata))) ~ g, data = mydata, + dist = "weibull")) (Intercept) g2 g3 0.0822325 -0.7830360 -1.1121547 > > ## Compare Weibull shape paramters > 1 / cf[1] log(y) 1.082433 > aft2$scale [1] 1.082433 > > ## Compare log-Likelihoods > logLik(opt2) 'log Lik.' -144.2832 (df=4) > logLik(aft2) 'log Lik.' -144.2832 (df=4) > > sqrt(diag(vcov(opt2)))[c("g2", "g3")] g2 g3 0.1462995 0.1502459 > sqrt(diag(vcov(aft2)))[c("g2", "g3")] g2 g3 0.1531531 0.1531334 > > > ## *************** Right-censored > > mydata <- data.frame(y = Surv(y, sample(0:1, length(y), replace = TRUE)), g = g) > coef(opt <- mlt(m, data = mydata, fixed = c("log(y)" = 1))) log(y) (Intercept) g2 g3 1.0000000 -0.7578848 0.8465755 1.2262994 > > ## Estimate coefficients > coef(aft <- survreg(y ~ g, data = mydata, dist = "expo")) (Intercept) g2 g3 0.7578849 -0.8465759 -1.2262999 > coef(cox <- coxph(y ~ g, data = mydata)) g2 g3 0.8332798 1.2134218 > coef(phreg <- phreg(y ~ g, data = mydata, dist = "weibull", shape = 1)) g2 g3 log(scale) 0.8465759 1.2262999 0.7578849 > > ## Compare standard errors > ## MLT > sqrt(diag(vcov(opt)))[c("g2", "g3")] g2 g3 0.1916379 0.1892540 > ## Cox > sqrt(diag(vcov(cox))) g2 g3 0.2088555 0.2118118 > ## phreg > sqrt(diag(phreg$var))[c("g2", "g3")] g2 g3 0.1916379 0.1892540 > > > > ## ************** Left-censored > > mydata <- data.frame(y = Surv(y, sample(0:1, length(y), replace = TRUE), + type = "left"), g = g) > > ## Estimate coefficients > coef(opt <- mlt(m, data = mydata, fixed = c("log(y)" = 1))) log(y) (Intercept) g2 g3 1.0000000 0.2164302 0.9043383 1.1406712 > > coef(aft <- survreg(y ~ g, data = mydata, dist = "expo")) (Intercept) g2 g3 -0.2164302 -0.9043383 -1.1406712 > > ## Compare standard errors > ## MLT > sqrt(diag(vcov(opt)))[c("g2", "g3")] g2 g3 0.1485446 0.1473571 > ## phreg > sqrt(diag(phreg$var))[c("g2", "g3")] g2 g3 0.1916379 0.1892540 > > > try(coef(cox <- coxph(y ~ g, data = mydata))) Error in coxph(y ~ g, data = mydata) : Cox model doesn't support "left" survival data > try(coef(phreg <- phreg(y ~ g, data = mydata, dist = "weibull", shape = 1))) Error in phreg(y ~ g, data = mydata, dist = "weibull", shape = 1) : This model doesn't support "left" survival data > > > > ## *************** Intervall-censored > mydata <- data.frame(y = Surv(y, y + 1, sample(0:3, length(y), replace = TRUE), + type = "interval"), g = g) > > coef(opt<- mlt(m, data = mydata, fixed = c("log(y)" = 1))) log(y) (Intercept) g2 g3 1.0000000 -0.2612821 0.7258507 0.8381451 > coef(aft <- survreg(y ~ g, data = mydata, dist = "expo")) (Intercept) g2 g3 0.2612821 -0.7258509 -0.8381449 > > ## Compare standard errors > ## MLT > sqrt(diag(vcov(opt)))[c("g2", "g3")] g2 g3 0.1651103 0.1723239 > ## phreg > sqrt(diag(phreg$var))[c("g2", "g3")] g2 g3 0.1916379 0.1892540 > > > try(coef(cox <- coxph(y ~ g, data = mydata))) Error in coxph(y ~ g, data = mydata) : Cox model doesn't support "interval" survival data > try(coef(phreg <- phreg(y ~ g, data = mydata, dist = "weibull", shape = 1))) Error in phreg(y ~ g, data = mydata, dist = "weibull", shape = 1) : This model doesn't support "interval" survival data > > > > > ## ************** Weibull - AFT ********************************* > > set.seed(196) > > ### true dgp > rY <- function(n, ...) rweibull(n, ...) > pY <- function(x, ...) pweibull(x, ...) > dY <- function(x, ...) dweibull(x, ...) > > gf <- gl(3, 1) > g <- rep(gf, 100) > y <- rY(length(g), scale = (1:nlevels(g))[g], shape = 3) > mydata <- data.frame(y = y, g = g) > > boxplot(y ~ g, data = mydata) > > Bb <- log_basis(numeric_var("y", support = range(y)), ui = "increasing", + remove_intercept = TRUE) > Bx <- as.basis(~ g, data = mydata) > m <- ctm(Bb, shifting = Bx, todist = "MinExtrVal") > > ## Estimate coefficients > > ## PH-scale > (cf <- coef(opt <- mlt(m, data = mydata))) log(y) (Intercept) g2 g3 3.10055012 -0.02641571 -2.12858193 -3.37418384 > > (coef_cox <- coef(cox <- coxph(Surv(y, rep(TRUE, nrow(mydata))) ~ g, + data = mydata))) g2 g3 -2.113511 -3.405349 > > (coef_phreg <- coef(phreg <- phreg(Surv(y, rep(TRUE, nrow(mydata))) ~ g, + data = mydata, dist = "weibull"))) g2 g3 log(scale) log(shape) -2.12855989 -3.37407494 0.00851049 1.13153109 > > ## AFT-scale > coef(aft <- survreg(Surv(y, rep(TRUE, nrow(mydata))) ~ g, data = mydata, + dist = "weibull")) (Intercept) g2 g3 0.00851049 0.68654367 1.08827090 > > cf[-1] / cf[1] (Intercept) g2 g3 -0.008519685 -0.686517504 -1.088253279 > coef_cox * aft$scale g2 g3 -0.6816897 -1.0983578 > coef_phreg[c("g2", "g3")] * aft$scale g2 g3 -0.6865437 -1.0882709 > > ## Compare shape parameters > 1 / cf[1] log(y) 0.3225234 > 1 / exp(coef_phreg[c("log(shape)")]) log(shape) 0.322539 > aft$scale [1] 0.322539 > > ## Compare standard errors > sqrt(diag(vcov(opt)))[c("g2", "g3")] g2 g3 0.1695244 0.2038101 > sqrt(diag(vcov(cox))) g2 g3 0.1855397 0.2196354 > sqrt(diag(phreg$var))[c("g2", "g3")] g2 g3 0.1695251 0.2038084 > > ## Compare log-Likelihoods > logLik(aft) 'log Lik.' -259.0559 (df=4) > logLik(opt) 'log Lik.' -259.0559 (df=4) > > > ## ************************* Right-censored > > mydata <- data.frame(y = Surv(y, sample(0:1, length(y), replace = TRUE)), g = g) > > ## Estimate coefficients > (cf <- coef(opt <- mlt(m, data = mydata))) log(y) (Intercept) g2 g3 3.1004541 -0.5711125 -2.3823821 -3.5225652 > cf[-1] / cf[1] (Intercept) g2 g3 -0.1842029 -0.7683978 -1.1361449 > > coef(aft <- survreg(y ~ g, data = mydata, dist = "weibull")) (Intercept) g2 g3 0.1842060 0.7683967 1.1361412 > > coef_cox <- coef(cox <- coxph(y ~ g, data = mydata)) > coef_cox * aft$scale g2 g3 -0.7957308 -1.1705361 > > coefs_phreg <- coef(phreg <- phreg(y ~ g, data = mydata, dist = "weibull")) > coefs_phreg[c("g2", "g3")] * aft$scale g2 g3 -0.7683967 -1.1361412 > > ## Compare standard errors > sqrt(diag(vcov(opt)))[c("g2", "g3")] g2 g3 0.2377624 0.2816145 > sqrt(diag(vcov(cox))) g2 g3 0.2684431 0.3114552 > sqrt(diag(phreg$var))[c("g2", "g3")] g2 g3 0.2377627 0.2816141 > > ## Compare log-Likelihoods > logLik(opt) 'log Lik.' -228.7986 (df=4) > logLik(aft) 'log Lik.' -228.7986 (df=4) > > > ## ****************** Left-censored > > mydata <- data.frame(y = Surv(y, sample(0:1, length(y), replace = TRUE), + type = "left"), g = g) > > ## Estimate coefficients > (cf <- coef(opt <- mlt(m, data = mydata))) log(y) (Intercept) g2 g3 2.1902538 0.5830063 -1.5662463 -2.3886791 > cf[-1] / cf[1] (Intercept) g2 g3 0.2661821 -0.7150981 -1.0905947 > > coef(aft <- survreg(y ~ g, data = mydata, dist = "weibull")) (Intercept) g2 g3 -0.2661692 0.7150879 1.0905913 > > ## Compare log-Likelihoods > logLik(opt) 'log Lik.' -209.1118 (df=4) > logLik(aft) 'log Lik.' -209.1118 (df=4) > > > ## ************** Interval-censored > > mydata <- data.frame(y = Surv(y, y + 1, sample(0:3, length(y), replace = TRUE), + type = "interval"), g = g) > > ## Estimate coefficients > (cf <- coef(opt <- mlt(m, data = mydata))) log(y) (Intercept) g2 g3 2.4686323 -0.3284947 -1.4644029 -2.4999036 > cf[-1] / cf[1] (Intercept) g2 g3 -0.1330675 -0.5932041 -1.0126675 > > coef(aft <- survreg(y ~ g, data = mydata, dist = "weibull")) (Intercept) g2 g3 0.1330675 0.5932042 1.0126677 > > ## Compare log-Likelihoods > logLik(opt) 'log Lik.' -290.4319 (df=4) > logLik(aft) 'log Lik.' -290.4319 (df=4) > > > proc.time() user system elapsed 3.57 0.65 4.23