R Under development (unstable) (2023-08-05 r84874 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 3.06 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.65 seconds 3) Running FUN 2 times in 2 thread(s)... 0.44 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 3.17 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.7 seconds 3) Running FUN 2 times in 2 thread(s)... 0.43 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 3.12 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.47 seconds 3) Running FUN 2 times in 2 thread(s)... 0.45 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 3.04 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... 1.33 seconds 3) Running FUN 2 times in 2 thread(s)... 0.26 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 3.04 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 8.34 seconds 3) Running FUN 2 times in 2 thread(s)... 0.26 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 2.84 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 39.58 seconds 3) Running FUN 2 times in 2 thread(s)... 0.27 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 2.58 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.34 seconds 3) Running FUN 2 times in 2 thread(s)... 0.23 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 2.87 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.33 seconds 3) Running FUN 2 times in 2 thread(s)... 0.25 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 2.59 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.33 seconds 3) Running FUN 2 times in 2 thread(s)... 0.24 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 3.12 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 5.64 seconds 3) Running FUN 2 times in 2 thread(s)... 0.37 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 3.03 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 5.22 seconds 3) Running FUN 2 times in 2 thread(s)... 0.34 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 3.18 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 6.5 seconds 3) Running FUN 2 times in 2 thread(s)... 0.37 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 2.43 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 2.5 seconds 3) Running FUN 2 times in 2 thread(s)... 0.21 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 2.53 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 39.36 seconds 3) Running FUN 2 times in 2 thread(s)... 0.2 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 2.51 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.67 seconds 3) Running FUN 2 times in 2 thread(s)... 0.21 seconds [ FAIL 0 | WARN 0 | SKIP 2 | PASS 17 ] ══ Skipped tests (2) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' • Skip all survivalsvm tests due to very long runtimes (1): 'test-surv_survivalsvm.R:1:1' [ FAIL 0 | WARN 0 | SKIP 2 | PASS 17 ] > > proc.time() user system elapsed 81.39 1.53 190.18