test_that("autoplot ResampleResult", { requireNamespace("mlr3fselect") result = data.table( resampling_iteration = c(1, 1, 1, 2, 2, 2, 3, 3, 3), learner_id = rep(c("classif.xgboost", "classif.rpart", "classif.ranger"), 3), n_features = c(2, 4, 4, 1, 5, 4, 1, 2, 4), features = list( c("V3", "V20"), c("V3", "V5", "V19", "V15"), c("V11", "V7", "V6", "V8"), c("V11"), c("V17", "V2", "V12", "V9", "V1"), c("V11", "V18", "V9", "V2"), c("V2"), c("V4", "V12"), c("V6", "V15", "V19", "V7")), classif.ce = c(0.13, 0.24, 0.16, 0.11, 0.25, 0.18, 0.15, 0.1, 0.16) ) efsr = mlr3fselect::EnsembleFSResult$new(result = result, features = paste0("V", 1:20), measure_id = "classif.ce") # pareto (stepwise) p = autoplot(efsr) expect_true(is.ggplot(p)) expect_doppelganger("pareto_stepwise", p) # pareto (estimated) p = autoplot(efsr, pareto_front = "estimated") expect_true(is.ggplot(p)) expect_doppelganger("pareto_estimated", p) # Performance p = autoplot(efsr, type = "performance") expect_true(is.ggplot(p)) expect_doppelganger("pareto_performance", p) # Number of features p = autoplot(efsr, type = "n_features") expect_true(is.ggplot(p)) expect_doppelganger("pareto_n_features", p) # stability p = autoplot(efsr, type = "stability") expect_true(is.ggplot(p)) expect_doppelganger("pareto_stability", p) })