skip_if_not_installed("mlr3") set.seed(42) tasks = mlr3::tsks(c("iris", "pima", "sonar")) learner = mlr3::lrns(c("classif.featureless", "classif.rpart"), predict_type = "prob") resampling = mlr3::rsmp("cv", folds = 3) bmr = mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) test_that("fortify BenchmarkResult", { f = fortify(bmr, measure = msr("classif.ce")) expect_data_table(f, nrows = 18, ncols = 5) expect_names(names(f), permutation.of = c( "nr", "task_id", "learner_id", "resampling_id", "classif.ce")) }) test_that("autoplot BenchmarkResult", { p = autoplot(bmr, measure = msr("classif.ce"), type = "boxplot") expect_true(is.ggplot(p)) expect_doppelganger("bmr_boxplot", p) expect_error(autoplot(bmr, type = "roc"), "multiple") object = bmr$clone(deep = TRUE)$filter(task_ids = "sonar") p = autoplot(object, type = "roc") expect_true(is.ggplot(p)) expect_doppelganger("bmr_roc", p) object = bmr$clone(deep = TRUE)$filter(task_ids = "pima") p = autoplot(object, type = "prc") expect_true(is.ggplot(p)) expect_doppelganger("bmr_prc", p) }) test_that("holdout roc plot (#54)", { tasks = tsks("german_credit") learners = c("classif.featureless", "classif.rpart") learners = lapply(learners, lrn, predict_type = "prob") resamplings = rsmp("holdout", ratio = .8) # holdout instead of cv design = benchmark_grid(tasks, learners, resamplings) bmr = benchmark(design) p = autoplot(bmr, type = "roc") expect_true(is.ggplot(p)) expect_doppelganger("bmr_holdout_roc", p) })