# stages in $optimize() -------------------------------------------------------- test_that("on_optimization_begin works", { callback = callback_batch_tuning(id = "test", on_optimization_begin = function(callback, context) { context$instance$terminator$param_set$values$n_evals = 20 } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(instance$terminator$param_set$values$n_evals, 20) }) test_that("on_optimization_end works", { callback = callback_batch_tuning(id = "test", on_optimization_end = function(callback, context) { context$instance$terminator$param_set$values$n_evals = 20 } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(instance$terminator$param_set$values$n_evals, 20) }) # stages in $eval_batch() ------------------------------------------------------ test_that("on_optimizer_after_eval works", { callback = callback_batch_tuning(id = "test", on_optimizer_before_eval = function(callback, context) { set(context$xdt, j = "minsplit", value = 1) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(unique(instance$archive$data$minsplit), 1) }) test_that("on_optimizer_after_eval works", { callback = callback_batch_tuning(id = "test", on_optimizer_after_eval = function(callback, context) { set(context$instance$archive$data, j = "classif.ce", value = 0.5) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(unique(instance$archive$data$classif.ce), 0.5) }) # stages in $eval_many() ------------------------------------------------------- test_that("on_eval_after_design works", { callback = callback_batch_tuning(id = "test", on_eval_after_design = function(callback, context) { context$design$param_values[[1]][[1]] = list(list(minsplit = 1)) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(instance$archive$benchmark_result$resample_result(1)$learner$param_set$values$minsplit, 1) }) test_that("on_eval_after_benchmark and on_eval_before_archive works", { callback = callback_batch_tuning(id = "test", on_eval_after_benchmark = function(callback, context) { callback$state$extra_performance = context$benchmark_result$aggregate(msr("classif.acc"))[, "classif.acc", with = FALSE] }, on_eval_before_archive = function(callback, context) { set(context$aggregated_performance, j = "classif.acc", value = callback$state$extra_performance) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_names(names(instance$archive$data), must.include = c("classif.ce", "classif.acc")) }) # stages in $assign_result() in TuningInstanceBatchSingleCrit ------------------ test_that("on_tuning_result_begin in TuningInstanceSingleCrit works", { callback = callback_batch_tuning(id = "test", on_tuning_result_begin = function(callback, context) { context$result_xdt = data.table(minsplit = 1) context$result_y = c(classif.ce = 0.7) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(instance$result$minsplit, 1) expect_equal(instance$result$classif.ce, 0.7) }) test_that("on_result_end in TuningInstanceSingleCrit works", { callback = callback_batch_tuning(id = "test", on_result_end = function(callback, context) { context$result$classif.ce = 0.7 } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(instance$result$classif.ce, 0.7) }) test_that("on_result in TuningInstanceSingleCrit works", { expect_warning({callback = callback_batch_tuning(id = "test", on_result = function(callback, context) { context$result$classif.ce = 0.7 } )}, "deprecated") instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msr("classif.ce"), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(instance$result$classif.ce, 0.7) }) # stages in $assign_result() in TuningInstanceBatchMultiCrit ------------------- test_that("on_tuning_result_begin in TuningInstanceBatchMultiCrit works", { callback = callback_batch_tuning(id = "test", on_tuning_result_begin = function(callback, context) { context$result_xdt = data.table(minsplit = 1) context$result_ydt = data.table(classif.ce = 0.7, classif.acc = 0.8) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(instance$result$minsplit, 1) expect_equal(instance$result$classif.ce, 0.7) }) test_that("on_result_end in TuningInstanceBatchMultiCrit works", { expect_warning({callback = callback_batch_tuning(id = "test", on_result = function(callback, context) { set(context$result, j = "classif.ce", value = 0.7) } )}, "deprecated") instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(unique(instance$result$classif.ce), 0.7) }) test_that("on_result in TuningInstanceBatchMultiCrit works", { callback = callback_batch_tuning(id = "test", on_result_end = function(callback, context) { set(context$result, j = "classif.ce", value = 0.7) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") expect_equal(unique(instance$result$classif.ce), 0.7) }) # stages in mlr3 workhorse ----------------------------------------------------- test_that("on_resample_begin works", { callback = callback_batch_tuning("test", on_resample_begin = function(callback, context) { # expect_* does not work assert_task(context$task) assert_learner(context$learner) assert_resampling(context$resampling) checkmate::assert_number(context$iteration) checkmate::assert_null(context$pdatas) context$data_extra = list(success = TRUE) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") walk(as.data.table(instance$archive$benchmark_result)$data_extra, function(data_extra) { expect_true(data_extra$success) }) }) test_that("on_resample_before_train works", { callback = callback_batch_tuning("test", on_resample_before_train = function(callback, context) { assert_task(context$task) assert_learner(context$learner) assert_resampling(context$resampling) checkmate::assert_number(context$iteration) checkmate::assert_null(context$pdatas) context$data_extra = list(success = TRUE) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") walk(as.data.table(instance$archive$benchmark_result)$data_extra, function(data_extra) { expect_true(data_extra$success) }) }) test_that("on_resample_before_predict works", { callback = callback_batch_tuning("test", on_resample_before_predict = function(callback, context) { assert_task(context$task) assert_learner(context$learner) assert_resampling(context$resampling) checkmate::assert_null(context$pdatas) context$data_extra = list(success = TRUE) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") walk(as.data.table(instance$archive$benchmark_result)$data_extra, function(data_extra) { expect_true(data_extra$success) }) }) test_that("on_resample_end works", { callback = callback_batch_tuning("test", on_resample_end = function(callback, context) { assert_task(context$task) assert_learner(context$learner) assert_resampling(context$resampling) checkmate::assert_number(context$iteration) checkmate::assert_class(context$pdatas$test, "PredictionData") context$data_extra = list(success = TRUE) } ) instance = tune( tuner = tnr("random_search", batch_size = 1), task = tsk("pima"), learner = lrn("classif.rpart", minsplit = to_tune(1, 10)), resampling = rsmp ("holdout"), measures = msrs(c("classif.ce", "classif.acc")), term_evals = 2, callbacks = callback) expect_class(instance$objective$context, "ContextBatchTuning") walk(as.data.table(instance$archive$benchmark_result)$data_extra, function(data_extra) { expect_true(data_extra$success) }) })