test_that("TuningInstanceBatchSingleCrit", { inst = TEST_MAKE_INST1(values = list(maxdepth = 10), folds = 2L, measure = msr("dummy.cp.classif", fun = function(pv) pv$cp), n_dim = 2) # test empty inst expect_data_table(inst$archive$data, nrows = 0) expect_identical(inst$archive$n_evals, 0L) #expect_output(print(inst), "Not tuned") # add a couple of eval points and test the state of inst z = inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_data_table(inst$archive$data, nrows = 2L) expect_equal(inst$archive$benchmark_result$resample_result(1)$learners[[1]]$param_set$values$cp, 0.3) expect_equal(inst$archive$benchmark_result$resample_result(1)$learners[[1]]$param_set$values$minsplit, 3) expect_equal(inst$archive$benchmark_result$resample_result(1)$learners[[1]]$param_set$values$maxdepth, 10) expect_equal(inst$archive$benchmark_result$resample_result(2)$learners[[1]]$param_set$values$cp, 0.25) expect_equal(inst$archive$benchmark_result$resample_result(2)$learners[[1]]$param_set$values$minsplit, 4) expect_equal(inst$archive$benchmark_result$resample_result(2)$learners[[1]]$param_set$values$maxdepth, 10) expect_identical(inst$archive$n_evals, 2L) expect_data_table(z, nrows = 2) expect_named(z, "dummy.cp.classif") z = inst$eval_batch(data.table(cp = c(0.2, 0.1), minsplit = c(3, 4))) expect_data_table(inst$archive$data, nrows = 4L) expect_equal(inst$archive$benchmark_result$resample_result(3)$learners[[1]]$param_set$values$cp, 0.2) expect_equal(inst$archive$benchmark_result$resample_result(3)$learners[[1]]$param_set$values$minsplit, 3) expect_equal(inst$archive$benchmark_result$resample_result(3)$learners[[1]]$param_set$values$maxdepth, 10) expect_equal(inst$archive$benchmark_result$resample_result(4)$learners[[1]]$param_set$values$cp, 0.1) expect_equal(inst$archive$benchmark_result$resample_result(4)$learners[[1]]$param_set$values$minsplit, 4) expect_equal(inst$archive$benchmark_result$resample_result(4)$learners[[1]]$param_set$values$maxdepth, 10) expect_identical(inst$archive$n_evals, 4L) expect_data_table(z, nrows = 2L) expect_named(z, "dummy.cp.classif") # test archive a = inst$archive$data expect_data_table(a, nrows = 4L) a = as.data.table(inst$archive) expect_data_table(a, nrows = 4L) expect_true("x_domain_cp" %in% colnames(a)) expect_true("dummy.cp.classif" %in% colnames(a)) }) test_that("archive one row (#40)", { inst = TEST_MAKE_INST1() inst$eval_batch(data.table(cp = 0.1)) a = inst$archive$data expect_data_table(a, nrows = 1) expect_number(a$classif.ce) }) test_that("eval_batch and termination", { inst = TEST_MAKE_INST1(term_evals = 3L) design = generate_design_random(inst$search_space, 2)$data inst$eval_batch(design[1:2, ]) expect_data_table(inst$archive$data, nrows = 2L) inst$eval_batch(design[1, ]) expect_data_table(inst$archive$data, nrows = 3L) expect_error(inst$eval_batch(design[1, ]), class = "terminated_error") expect_data_table(inst$archive$data, nrows = 3L) inst = TEST_MAKE_INST1(term_evals = 5L) tuner = tnr("random_search", batch_size = 3L) tuner$optimize(inst) expect_data_table(inst$archive$data, nrows = 6L) # second start should be a NOP tuner$optimize(inst) tab = inst$archive$data expect_data_table(tab, nrows = 6L) }) test_that("the same experiment can be added twice", { inst = TEST_MAKE_INST1() d = data.table(cp = c(0.1, 0.1)) inst$eval_batch(d) tab = inst$archive$data expect_data_table(tab, nrows = 2) }) test_that("tuning with custom resampling", { task = tsk("pima") resampling = rsmp("custom") train_sets = list(1:300 , 332:632) test_sets = list(301:331, 633:663) resampling$instantiate(task, train_sets, test_sets) learner = lrn("classif.rpart") measure = msr("classif.ce") tune_ps = ps( cp = p_dbl(lower = 0.001, upper = 0.1), minsplit = p_int(lower = 1, upper = 10) ) terminator = trm("evals", n_evals = 10) tuner = tnr("random_search") inst = TuningInstanceBatchSingleCrit$new(task, learner, resampling, measure, terminator, tune_ps) tuner$optimize(inst) rr = as.data.table(inst$archive$benchmark_result)$resampling expect_list(rr, len = 20) rr = inst$archive$benchmark_result$resample_result(1)$resampling expect_equal(rr$iters, 2) expect_set_equal(rr$train_set(1), train_sets[[1]]) expect_set_equal(rr$train_set(2), train_sets[[2]]) expect_set_equal(rr$test_set(1), test_sets[[1]]) expect_set_equal(rr$test_set(2), test_sets[[2]]) }) test_that("non-scalar hyperpars (#201)", { skip_if_not_installed("mlr3pipelines") requireNamespace("mlr3pipelines") `%>>%` = getFromNamespace("%>>%", asNamespace("mlr3pipelines")) learner = mlr3pipelines::po("select") %>>% lrn("classif.rpart") search_space = ps( classif.rpart.minsplit = p_int(1, 1), .extra_trafo = function(x, param_set) { x$select.selector = mlr3pipelines::selector_all() return(x) } ) inst = TuningInstanceBatchSingleCrit$new(tsk("iris"), learner, rsmp("holdout"), msr("classif.ce"), trm("evals", n_evals = 1), search_space, check_values = FALSE) tnr("random_search")$optimize(inst) expect_data_table(inst$archive$data, nrows = 1) }) test_that("store_benchmark_result and store_models flag works", { inst = TEST_MAKE_INST1(values = list(maxdepth = 10), folds = 2L, measure = msr("dummy.cp.classif", fun = function(pv) pv$cp), n_dim = 2, store_benchmark_result = FALSE) inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_true("uhashes" %nin% colnames(inst$archive$data)) inst = TEST_MAKE_INST1(values = list(maxdepth = 10), folds = 2L, measure = msr("dummy.cp.classif", fun = function(pv) pv$cp), n_dim = 2, store_benchmark_result = TRUE) inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_r6(inst$archive$benchmark_result, "BenchmarkResult") inst = TEST_MAKE_INST1(values = list(maxdepth = 10), folds = 2L, measure = msr("dummy.cp.classif", fun = function(pv) pv$cp), n_dim = 2, store_benchmark_result = TRUE, store_models = FALSE) inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_null(inst$archive$benchmark_result$resample_result(1)$learners[[1]]$model) inst = TEST_MAKE_INST1(values = list(maxdepth = 10), folds = 2L, measure = msr("dummy.cp.classif", fun = function(pv) pv$cp), n_dim = 2, store_benchmark_result = TRUE, store_models = TRUE) inst$eval_batch(data.table(cp = c(0.3, 0.25), minsplit = c(3, 4))) expect_class(inst$archive$benchmark_result$resample_result(1)$learners[[1]]$model, "rpart") }) test_that("check_values flag with parameter set dependencies", { learner = LearnerRegrDepParams$new() learner$param_set$values$xx = "a" search_space = ps( cp = p_dbl(lower = 0.1, upper = 0.3), yy = p_dbl(lower = 0.1, upper = 0.3) ) terminator = trm("evals", n_evals = 20) tuner = tnr("random_search") inst = TuningInstanceBatchSingleCrit$new(tsk("boston_housing"), learner, rsmp("holdout"), msr("regr.mse"), terminator, search_space, check_values = FALSE) tuner$optimize(inst) expect_named(inst$result_learner_param_vals, c("xx", "cp", "yy")) inst = TuningInstanceBatchSingleCrit$new(tsk("boston_housing"), learner, rsmp("holdout"), msr("regr.mse"), terminator, search_space, check_values = TRUE) expect_error(tuner$optimize(inst), regexp = "yy.* can only be set") }) test_that("search space from TuneToken works", { learner = lrn("classif.rpart") learner$param_set$values$cp = to_tune(0.1, 0.3) instance = TuningInstanceBatchSingleCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"), measure = msr("classif.ce"), terminator = trm("evals", n_evals = 1)) expect_r6(instance$search_space, "ParamSet") expect_equal(instance$search_space$ids(), "cp") ps = ps( cp = p_dbl(lower = 0.1, upper = 0.3) ) expect_error(TuningInstanceBatchSingleCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"), measure = msr("classif.ce"), search_space = ps, terminator = trm("evals", n_evals = 1)), regexp = "If the values of the ParamSet of the Learner contain TuneTokens you cannot supply a search_space.", fixed = TRUE) instance = TuningInstanceBatchSingleCrit$new(task = tsk("iris"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measure = msr("classif.ce"), search_space = ps, terminator = trm("evals", n_evals = 1)) expect_r6(instance$search_space, "ParamSet") expect_equal(instance$search_space$ids(), "cp") }) test_that("TuneToken and result_learner_param_vals works", { learner = lrn("classif.rpart", xval = 0) learner$param_set$values$cp = to_tune(0.1, 0.3) instance = TuningInstanceBatchSingleCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"), measure = msr("classif.ce"), terminator = trm("evals", n_evals = 1)) xdt = data.table(cp = 0.1) tuner = tnr("design_points", design = xdt) tuner$optimize(instance) expect_equal(instance$result_learner_param_vals$xval, 0) expect_equal(instance$result_learner_param_vals$cp, 0.1) }) test_that("TuningInstanceBatchSingleCrit and empty search space works", { # xval constant instance = tune( tuner = tnr("random_search", batch_size = 5), task = tsk("pima"), learner = lrn("classif.rpart"), resampling = rsmp("cv", folds = 3), measures = msr("classif.ce"), term_evals = 10 ) expect_data_table(instance$result) expect_equal(instance$result$learner_param_vals, list(list(xval = 0))) expect_equal(instance$result$x_domain, list(list())) # no constant learner = lrn("classif.rpart") learner$param_set$values$xval = NULL instance = tune( tuner = tnr("random_search", batch_size = 5), task = tsk("pima"), learner = learner, resampling = rsmp("cv", folds = 3), measures = msr("classif.ce"), term_evals = 10 ) expect_data_table(instance$result) expect_list(instance$result$learner_param_vals[[1]], len = 0) expect_equal(instance$result$x_domain, list(list())) }) test_that("assign_result works with one hyperparameter", { learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1)) learner$param_set$values$xval = NULL task = tsk("pima") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = TuningInstanceBatchSingleCrit$new(task, learner, resampling, measure, terminator) xdt = data.table(cp = 0.1) y = c(classif.ce = 0.8) instance$assign_result(xdt, y) res = instance$result expect_data_table(res, nrows = 1) expect_equal(res$cp, 0.1) expect_equal(res$classif.ce, 0.8) expect_equal(res$learner_param_vals[[1]], list(cp = 0.1)) }) test_that("assign_result works with two hyperparameters", { learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1), minbucket = to_tune(1, 12)) learner$param_set$values$xval = NULL task = tsk("pima") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = TuningInstanceBatchSingleCrit$new(task, learner, resampling, measure, terminator) xdt = data.table(cp = 0.1, minbucket = 1) y = c(classif.ce = 0.8) instance$assign_result(xdt, y) res = instance$result expect_data_table(res, nrows = 1) expect_equal(res$cp, 0.1) expect_equal(res$minbucket, 1) expect_equal(res$classif.ce, 0.8) expect_equal(res$learner_param_vals[[1]], list(cp = 0.1, minbucket = 1)) }) test_that("assign_result works with two hyperparameters and one constant", { learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1), minbucket = to_tune(1, 12), xval = 1) task = tsk("pima") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = TuningInstanceBatchSingleCrit$new(task, learner, resampling, measure, terminator) xdt = data.table(cp = 0.1, minbucket = 1) y = c(classif.ce = 0.8) instance$assign_result(xdt, y) res = instance$result expect_data_table(res, nrows = 1) expect_equal(res$cp, 0.1) expect_equal(res$minbucket, 1) expect_equal(res$classif.ce, 0.8) expect_equal(res$learner_param_vals[[1]], list(xval = 1, cp = 0.1, minbucket = 1)) }) test_that("assign_result works with no hyperparameters and one constant", { learner = lrn("classif.rpart", xval = 1) task = tsk("pima") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = TuningInstanceBatchSingleCrit$new(task, learner, resampling, measure, terminator) xdt = data.table() y = c(classif.ce = 0.8) instance$assign_result(xdt, y) res = instance$result expect_data_table(res, nrows = 1) expect_equal(res$classif.ce, 0.8) expect_equal(res$learner_param_vals[[1]], list(xval = 1)) }) test_that("assign_result works with no hyperparameters and two constant", { learner = lrn("classif.rpart", xval = 1, cp = 1) task = tsk("pima") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = TuningInstanceBatchSingleCrit$new(task, learner, resampling, measure, terminator) xdt = data.table() y = c(classif.ce = 0.8) instance$assign_result(xdt, y) res = instance$result expect_data_table(res, nrows = 1) expect_equal(res$classif.ce, 0.8) expect_equal(sortnames(res$learner_param_vals[[1]]), list(xval = 1, cp = 1)) }) test_that("assign_result works with one hyperparameters and one constant", { learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1), xval = 1) task = tsk("pima") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = TuningInstanceBatchSingleCrit$new(task, learner, resampling, measure, terminator) xdt = data.table(cp = 0.1) y = c(classif.ce = 0.8) instance$assign_result(xdt, y) res = instance$result expect_data_table(res, nrows = 1) expect_equal(res$cp, 0.1) expect_equal(res$classif.ce, 0.8) expect_equal(res$learner_param_vals[[1]], list(xval = 1, cp = 0.1)) }) test_that("assign_result works with no hyperparameter and constant", { learner = lrn("classif.rpart") learner$param_set$values$xval = NULL task = tsk("pima") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = TuningInstanceBatchSingleCrit$new(task, learner, resampling, measure, terminator) xdt = data.table() y = c(classif.ce = 0.8) instance$assign_result(xdt, y) res = instance$result expect_data_table(res, nrows = 1) expect_equal(res$classif.ce, 0.8) expect_list(res$learner_param_vals[[1]], len = 0) }) test_that("objective contains no benchmark results", { task = tsk("pima") learner = lrn("classif.rpart") resampling = rsmp("holdout") measure = msr("classif.ce") terminator = trm("evals", n_evals = 10) instance = ti(task, learner, resampling, measure, terminator) tuner = tnr("random_search", batch_size = 1) tuner$optimize(instance) expect_null(instance$objective$.__enclos_env__$private$.benchmark_result) }) test_that("dependencies in defaults work", { learner = lrn("classif.rpart", cp = to_tune(0.01, 0.1)) learner$param_set$add_dep("cp", "keep_model", CondEqual$new("keep_model" == TRUE)) expect_class(tune( tuner = tnr("random_search", batch_size = 5), task = tsk("pima"), learner = learner, resampling = rsmp("cv", folds = 3), measures = msr("classif.ce"), terminator = trm("evals", n_evals = 20)), "TuningInstanceBatchSingleCrit") expect_error(tune( tuner = tnr("random_search", batch_size = 5), task = tsk("pima"), learner = learner, resampling = rsmp("cv", folds = 3), measures = msr("classif.ce"), terminator = trm("evals", n_evals = 20), check_values = TRUE), regexp = "Assertion on") }) # Internal Tuning -------------------------------------------------------------- test_that("Batch single-crit internal tuning works", { learner = lrn("classif.debug", validate = 0.2, early_stopping = TRUE, x = to_tune(0.2, 0.3), iter = to_tune(upper = 1000, internal = TRUE, aggr = function(x) 99)) instance = ti( task = tsk("pima"), learner = learner, resampling = rsmp("cv", folds = 3), measures = msr("classif.ce"), terminator = trm("evals", n_evals = 20), store_benchmark_result = TRUE ) tuner = tnr("random_search", batch_size = 2) expect_data_table(tuner$optimize(instance), nrows = 1) expect_list(instance$archive$data$internal_tuned_values, len = 20, types = "list") expect_equal(instance$archive$data$internal_tuned_values[[1]], list(iter = 99)) expect_false(instance$result_learner_param_vals$early_stopping) expect_equal(instance$result_learner_param_vals$iter, 99) })